×
Don't wait for the right time for studying... It won't come.
--Your friends at LectureNotes
Close

Note for Basic Electrical Engineering - BEE By vtu rangers

  • Basic Electrical Engineering - BEE
  • Note
  • Visvesvaraya Technological University Regional Center - VTU
  • 7 Topics
  • 60269 Views
  • 1236 Offline Downloads
  • Uploaded 1 year ago
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-3

Basic Electrical Engineering 15ELE15 4b. Three Phase Synchronous Generators: Principle of operation, Types and constructional features, Advantages of rotating field type alternator, Synchronous speed, Frequency of generated voltage,Emf equation. Concept of winding factor (excluding the derivation of distribution and pitch factors). Illustrative examples on emf equation. 4 Hours Module – 5 5a. Single Phase Transformers: Necessity of transformer, Principle of operation and construction of single-phase transformers (core and shell types). Emf equation, losses, variation losses with respect to load, efficiency, Condition for maximum efficiency, Voltage regulation and its significance (Open Circuit and Short circuit tests, equivalent circuit and phasor diagrams are excluded). Illustrative problems on emf equation and efficiency only. 6 Hours 5b. Three Phase Induction Motors: Principle of operation, Concept and production of rotating magnetic field, Synchronous speed, rotor speed, Slip, Frequency of the rotor induced emf, Types and Constructional features. Slip and its significance. Applications of squirrel - cage and slip – ring motors. Necessity of a starter, starting of motor using stars-delta starter. Illustrative examples on slip calculations. 4 Hours TEXT BOOKS 1 “Basic Electrical Engineering”, D C Kulshreshtha, TMH, 2009 Edition. 2 “Fundamentals of Electrical Engineering”, Rajendra Prasad, PHI, Second Edition, 2009. REFERENCE BOOKS: 1. "Electrical Technology", E. Hughes International Students 9th Edition, Pearson, 2005. 2. “Basic Electrical Engineering”, Abhijit Chakrabarti, Sudiptanath, Chandan Kumar Chanda, TMH, First reprint 2009. 3. Problems in Electrical Engineering, Parker Smith, CBS Publishers and Distributors, 9th Edition, 2003. Department of EEE, SJBIT Page 3

Text from page-4

Basic Electrical Engineering 15ELE15 CONTENTS Sl. No TOPICS PAGE NO. Module-1: 1a) DC Circuits 1. 5-19 1b) Electromagnetism Module-2: 2 a) D.C. Machines 2. 20-36 2 b) Measuring Instruments Module-3 3a) Single-phase A.C. Circuits 3. 37-88 3 b) Domestic Wiring Module-4 4 a) Three Phase Circuits 4. 89-106 4 b) Three Phase Synchronous Generators Module-5 5 a) Single Phase Transformers 5. 107-134 5 b) Three Phase Induction Motors Department of EEE, SJBIT Page 4

Text from page-5

Basic Electrical Engineering 15ELE15 MODULE – 1 1. D. C. Circuits Ohm’s Law: the current flowing through the electric the electric circuit is directly proportional to the potential difference across the circuit and inversely proportional to the resistance of the circuit, provided the temperature remains constant. The limitations of the Ohm’s law are, 1) It is not applicable to the nonlinear devices such as diodes, zener diodes, voltage regulators ect. 2) It does not hold good for non-metallic conductors such as silicon carbide. The law for such conductors is given by, V = K Im where k, m are constants. (I) Current is what flows on a wire or conductor like water flowing down a river. Current flows from negative to positive on the surface of a conductor. Current is measured in (A) amperes or amps. (E) Voltage Ohm's Law defines the relationships between (P) power, (E) voltage, (I) current, and (R) resistance. One ohm is the resistance value through which one volt will maintain a current of one ampere is the difference in electrical potential between two points in a circuit. It's the push or pressure behind current flow through a circuit, and is measured in (V) volts. (R) Resistance determines how much current will flow through a component. Resistors are used to control voltage and current levels. A very high resistance allows a small amount of current to flow. A very low resistance allows a large amount of current to flow. Resistance is measured in ohms. Department of EEE, SJBIT Page 5

Text from page-6

Basic Electrical Engineering 15ELE15 To make a current flow through a resistance there must be a voltage across that resistance. Ohm's Law shows the relationship between the voltage (V), current (I) and resistance (R). It can be written in three ways: V V=I×R or I= V or R where: V = voltage in volts (V) R= I or: V = voltage in volts (V) I = current in amps (A) I = current in milliamps (mA) R = resistance in ohms ( ) R = resistance in kilohms (k ) Department of EEE, SJBIT Page 6

Lecture Notes