×
Every great story on the planet happened when someone decided not to give up, but kept going no matter what.
--Your friends at LectureNotes
Close

Introduction To Nanotechnology

by Nawab Masid
Type: NoteOffline Downloads: 69Views: 2121Uploaded: 6 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Nawab Masid
Nawab Masid
V. Pokropivny, R. Lohmus, I. Hussainova, A. Pokropivny, S. Vlassov. Introduction in nanomaterials and nanotechnology. – University of Tartu. – 2007, 225p. (Special lecture course for bachelors, MSc, post-graduates and specialists in nanotechnology) Physics and chemistry of nanostructures or nanophysics and nanochemistry are relatively new areas of science arisen in last decade of past century after discovery of fullerenes and nanotubes. It is introduction into more extent interdisciplinary integrated modern science known now as nanotechnology rapidly developing. At this stage of growing knowledge authors have shortly outlined the subject and classifications of nanostructures, interesting milestones, main principles, methods, techniques, as well as general directions of future perspective research to be a guideline in a see of modern research. Main mechanisms of physico-chemical processes affected formation of nanostructured materials and their properties are clearly expressed, in particular, a dielectric permittivity as a principal characteristic of electric, magnetic, acoustic, optic transparency, superconducting, and other properties of nanoceramics and nanometals. The peculiar properties of nanostructures are emphasized to be result of size effects, external and internal, classical and quantum ones, that arise in zero-dimensional quantum dots, one-dimensional wires, and two-dimensional layers. Numerous applications are considered including microlasers, photonic crystals, probe microscopy, left-handed materials with negative refraction index, etc. Novel idea is advanced that new discovery of novel fundamental laws, phenomena and applied effects are possible only in artificially fabricated nanostructures with new effect theoretically predicted and designed in advance. Content of the course covers the types, classification and peculiarities of nanostructures, size effects, synthesis and growth, fullerenes, nanotubes, microlasers, photonics, scanning probe microscopy, nanomanipulation, etc. The course is based on the lectures given during several years for students of Kiev National University (Ukraine), Tartu University and Tallinn Technical University (Estonia). RAK/NSF Meede 1.1 Project has supported this work. Also Estonian Science foundation grants no. 6658,6537, 6660 and Ukraine Nanotechnology Science Foundation. Estonian Nanotechnology Competence Center projects were also engaged to this work Copyright: Vladimir Pokropivny (Tartu University, Tallinn University, Frantsevich Institute for Problems of Materials Science of NASU), Rynno Lohmus (Tartu University), Irina Hussainova (Tallinn University of Technology), Alex Pokropivny (Frantsevich Institute for Problems of Materials Science of NASU), Sergey Vlassov (Tartu University). ISBN: 978–9949–11–741–3 Tartu University Press www.tyk.ee
CONTENTS 1. INTRODUCTION .................................................................................................. 7 2. CLASSIFICATION OF NANOSTRUCTURES .................................................. 2.1. Gleiter's classification of nanostructured materials ....................................... 2.2. Classification of nanostructures by dimensionality ....................................... 2.3. Concept of “surface form engineering” in nanomaterial science .................. 14 14 16 18 3. PECULIARITIES OF NANOSTRUCTURED MATERIALS ............................. 3.1. Introduction..................................................................................................... 3.2. Extended internal surface................................................................................ 3.3. Increasing of surface energy and tension........................................................ 3.4. Grain boundaries............................................................................................. 3.5. Instability of 3D0 NSM due to grain growth.................................................. 20 20 22 23 25 26 4. SIZE EFFECTS IN NSM ....................................................................................... 4.1. Definition and types........................................................................................ 4.2. Internal classic (IC) size effects...................................................................... 4.2.1. Reduction of lattice parameter.............................................................. 4.2.2. Decrease in melting point ..................................................................... 4.2.3. Decreasing of thermal conductivity...................................................... 4.2.4. Diffusion enhancement ......................................................................... 4.2.5. Increasing of plastic yield strength and hardness of polycrystal ......... 4.3. External classic (EC) size effects at interaction of light with matter.............. 4.4. Intrinsic quantum (IQ) size effects ................................................................. 4.4.1. Transformation of absorption spectra of sodium from atom to solid ... 4.4.2. Blue shift – the increasing of band gap and luminescence frequency .. 4.4.3. Broadening of energetic bands ............................................................. 4.4.4. Phase transitions in ferromagnetic and ferroelectrics........................... 4.5. Extrinsic quantum (EQ) size effects in semimetallic bismuth Bi.................. 29 29 30 30 31 31 32 32 33 34 34 35 36 37 39 5. TECHNIQUES FOR SYNTHESIS AND CONSOLIDATION OF NSM............. 5.1. Vapor – phase synthesis.................................................................................. 5.1.1. Gas-Vapor deposition ........................................................................... 5.1.2. Plasma – based synthesis ...................................................................... 5.1.3. Molecular beam epitaxy ....................................................................... 5.1.4. Inert gas condensation .......................................................................... 5.1.5. Flame pyrolysis..................................................................................... 5.2. Liquid phase synthesis .................................................................................... 5.2.1. Colloidal methods................................................................................. 5.2.2. Solution precipitation............................................................................ 5.2.3. Electrodeposition .................................................................................. 5.3. Sol-gel technique ............................................................................................ 5.3.1. Introduction........................................................................................... 5.3.2. Sol-gel process...................................................................................... 5.3.3. Sol-gel coating processes...................................................................... 5.3.4. Sol-gel applications .............................................................................. 5.4. Solid – state phase synthesis........................................................................... 5.4.1. Mechanical milling, attriction and alloying.......................................... 5.4.2. Severe plastic deformation ................................................................... 5.5. Other methods................................................................................................. 41 41 42 42 44 45 45 46 46 47 47 48 48 48 50 53 53 54 56 59
4 5.6. Consolidation of nanopowders ........................................................................ 5.6.1. Sintering of nanoparticles ..................................................................... 5.6.2. Non- conventional processing .............................................................. 5.6.2.1. Microwave sintering................................................................. 5.6.2.2. Field – assisted sintering (FAS) ............................................... 5.6.2.3. Shockwave consolidation......................................................... 60 61 64 64 65 67 6. PROPERTIES OF 3D0 NANOSTRUCTURED MATERIALS (NSM)................ 6.1. Mechanical properties..................................................................................... 6.1.1. Hardness and strength........................................................................... 6.1.2. Ductility ................................................................................................ 6.1.3. Applications of Mechanical Properties of NSM................................... 6.2. Thermal properties of NSM............................................................................ 6.3. Electrical Properties of NSM.......................................................................... 6.4. Optical Properties of NSM ............................................................................. 6.5. Chemical Properties of NSM.......................................................................... 6.6. Magnetic Properties of NSM .......................................................................... 68 68 69 71 75 76 78 80 82 83 7. MEZO-NANO-POROUS MATERIALS ............................................................... 7.1. Nanoporous materials ..................................................................................... 7.2. Zeolites and zeolite-like materials .................................................................. 7.3. Mesoporous materials ..................................................................................... 84 84 85 86 8. PHYSICAL BACKGROUND OF NANOSTRUCTURES .................................. (QUANTUM DOTS, WHISKERS, AND WELLS) ................................................. 8.1. Quantization and Heisenberg's indeterminacy principle ................................ 8.2. Energy states and wave functions in quantum well........................................ 8.2.1. Rectangular infinite potential ............................................................... 8.2.2. Rectangular finite potential................................................................... 8.2.3. Parabolic finite potential....................................................................... 8.2.4. Rise of energy bands in periodical potential within the Kronig-Penny model ............................................................................ 8.3. Quantum well in the gallium arsenide GaAs/AlGaAs heterostructure........... 8.4. Density of electronic states for bulk 3D and low dimensional 2D, 1D, 0D systems............................................................................................................ 8.4.1. General case for bulk 3D system .......................................................... 8.4.2. Case for 2D-quantum well.................................................................... 8.4.3. 1D-Case for quantum wire.................................................................... 8.4.4. 0D-Case for quantum dot...................................................................... 8.5. 2D-Electronic gas (2D-EG) in metal-oxide-semiconductor (MOS) structures.......................................................................................................... 88 88 88 89 89 91 92 9. FULLERENES ........................................................................................................ 9.1. History of fullerene discovery and Nobel Prices ............................................ 9.2. Allotropic forms of carbon .............................................................................. 9.3. Fullerenes – the closed carbon cages consistent of 5- and 6-membered rings 9.4. Fullerites – the crystals of fullerenes ............................................................... 9.5. Fullerides – doped fullerites ............................................................................ 9.6. Synthesis of fullerenes ..................................................................................... 9.7. Spectral properties of С60 ................................................................................ 9.8. Application of fullerenes ................................................................................. 99 99 100 102 103 103 104 106 106 92 94 95 96 96 97 97 98
5 10. CARBON NANOTUBES (C-NT) ........................................................................ 10.1. Geometrical structure..................................................................................... 10.2. Symmetry....................................................................................................... 10.3. Unit cell and Brillouin zone........................................................................... 10.4. Band structure ................................................................................................ 10.4.1. Band structure graphite ..................................................................... 10.4.2. Band structure of C-NTs ................................................................... 10.4.3. Electronic density of state in NT....................................................... 10.5. Phonon spectra............................................................................................... 10.6. Thermal physical properties........................................................................... 10.7. Thermal conductivity..................................................................................... 10.8. Electric conductivity ...................................................................................... 10.9. Electron interference (Aaronov-Bohm effect).............................................. 10.10. Nanotubular superconductivity.................................................................... 10.11. Mechanical properties.................................................................................. 10.12. Vibrations of C-NTs .................................................................................... 10.13. Nanothors from carbon nanotubes............................................................... 108 108 110 110 112 112 112 114 116 120 120 121 122 124 127 131 132 11. NONCARBON NANOSTRUCTURES AND NANOTUBEs.............................. 11.1. Fulborenes and fulborenites, the BN analogues of fullerenes and fullerites . 11.2. Boron-nitride nanotubes ................................................................................ 11.3. Dichalcogenide NTs ...................................................................................... 11.4. Oxide NTs...................................................................................................... 11.5. Other kinds of noncarbon nanotubes ............................................................. 133 133 135 137 138 139 12. APPLICATIONS OF NANOTUBES ................................................................... 12.1. Field Emitting Transistor (FET) based on C-NTs ........................................ 12.2. Logical circuits .............................................................................................. 12.2.1. Voltage inverter................................................................................. 12.2.2. Chips with logical elements .............................................................. 12.3. Indicators and flat displays ............................................................................ 12.4. Thermometer.................................................................................................. 141 141 141 142 142 144 145 13. PHOTONIC CRYSTALS ..................................................................................... 13.1. Physical ideas for light control via Bragg diffraction................................... 13.2. Methods for fabrication of photonic crystals and membranes....................... 13.3. Phenomenon of photon-trapping by defects in PC ........................................ 13.4. Photonic band structure ................................................................................. 13.5. Application..................................................................................................... 13.5.1. Waveguide......................................................................................... 13.5.2. Hollow concentrators of light............................................................ 13.5.3. Filters................................................................................................. 13.5.4. Fibers ................................................................................................. 13.5.5. Prisms, lenses, interferometers.......................................................... 146 146 147 148 149 151 151 152 152 153 153 14. SEMICONDUCTOR MICROLASERS ON BASE OF NANOSTRUCTURES . 14.1. Introduction to injection lasers ..................................................................... 14.2. Laser on base of double heterojunction ......................................................... 14.3. Cascade multi-layered laser ........................................................................... 14.4. Microdisc laser............................................................................................... 14.5. Nanowire laser ............................................................................................... 14.6. Zeolite-dye laser ............................................................................................ 14.7. Laser with distributed feedback (DFB) ......................................................... 155 155 157 158 158 159 160 160

Lecture Notes