×
Yes studying sucks... But NO, NOT more than FAILURE.
--Your friends at LectureNotes
Close

Note for Digital Signal Processing - DSP By ANNA SUPERKINGS

  • Digital Signal Processing - DSP
  • Note
  • Anna university - ACEW
  • Electronics and Communication Engineering
  • 2 Topics
  • 119 Views
  • Uploaded 7 months ago
Anna Superkings
Anna Superkings
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-1

Fatima Michael College of Engineering & Technology UNIT - I DISCRETE FOURIER TRANSFORMS (DFT) 1. DIRECT COMPUTATION 2. RADIX-2 FFT 3. DECIMATION-IN-TIME FFT 4. FLOWGRAPHS 5. BIT REVERSAL PERMUTATION 6. COMPLEXITY 7. DECIMATION-IN-FREQUENCY FFT Fatima Michael College of Engineering & Technology

Text from page-2

Fatima Michael College of Engineering & Technology THE FFT A fast Fourier transform (FFT) is any fast algorithm for computing the DFT. The development of FFT algorithms had a tremendous impact on computational aspects of signal processing and applied science. The DFT of an N -point signal {x[n], 0  n  N 1} is defined as X[k] = N X1 x[n] WN kn , 0kN n=0 where ✓ 2⇡ WN = e = cos N is the principal N -th root of unity. j 2⇡ N ◆ ✓ 2⇡ + j sin N 1 ◆ DIRECT DFT COMPUTATION Direct computation of X[k] for 0  k  N (N 1 requires 1)2 complex multiplications N (N 1) complex additions Fatima Michael College of Engineering & Technology

Text from page-3

Fatima Michael College of Engineering & Technology RADIX-2 FFT The radix-2 FFT algorithms are used for data vectors of lengths N = 2K . They proceed by dividing the DFT into two DFTs of length N/2 each, and iterating. There are several types of radix2 FFT algorithms, the most common being the decimation-in-time (DIT) and the decimation-in-frequency (DIF). This terminology will become clear in the next sections. Preliminaries The development of the FFT will call on two properties of WN . The first property is: WN2 = WN/2 which is derived as WN2 = e =e j 2⇡ N ·2 2⇡ j N/2 = WN/2 . More generally, we have nk WN2nk = WN/2 . The second property is: k+ N2 WN = WNk Fatima Michael College of Engineering & Technology

Text from page-4

Fatima Michael College of Engineering & Technology which is derived as k+ N2 WN 2⇡ N = ej N (k+ 2 ) 2⇡ 2⇡ N = e j N k · ej N ( 2 ) 2⇡ = ej N k · ej⇡ 2⇡ = ej N k = WNk Fatima Michael College of Engineering & Technology

Lecture Notes