×
SET SOME GOALS. STAY QUIET ABOUT THEM. SMASH THE HELL OUT OF THEM. CLAP FOR YOUR DAMN SELF.
--Your friends at LectureNotes
Close

Note for Discrete Mathematics - DMS by Śåmŕäț Bisht

  • Discrete Mathematics - DMS
  • Note
  • Quantum University - quantum
  • Computer Science Engineering
  • B.Tech
  • 8 Topics
  • 224 Views
  • 5 Offline Downloads
  • Uploaded 11 months ago
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-2

AF DR T 2

Text from page-3

Contents 1 Basic Set Theory 1.1 1.2 1.3 5 Basic Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Union and Intersection of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Set Difference, Set Complement and the Power Set . . . . . . . . . . . . . . . . 8 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Composition of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.2 Equivalence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Advanced topics in Set Theory and Relations∗ . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1 Families of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 More on Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Peano Axioms and Countability 23 2.1.1 Addition, Multiplication and its properties . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Well Ordering in N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Finite and Infinite Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Countable and Uncountable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.1 Cantor’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 Creating Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Schr¨ oder-Bernstein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Integers and Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 2.5 AF T Peano Axioms and the set of Natural Numbers . . . . . . . . . . . . . . . . . . . . . . DR 2.1 23 Construction of Integers and Rationals∗ . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5.1 Construction of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5.2 Construction of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Partial Orders, Lattices and Boolean Algebra 57 3.1 Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Basic Counting 4.1 77 Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.1 Multinomial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Circular Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Solutions in Non-negative Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Set Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5 Lattice Paths and Catalan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3

Text from page-4

4 CONTENTS 4.6 Some Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Advanced Counting Principles 5.1 Pigeonhole Principle . . . . . . . . . . . . . . . 5.2 Principle of Inclusion and Exclusion . . . . . . 5.3 Generating Functions . . . . . . . . . . . . . . . 5.4 Recurrence Relation . . . . . . . . . . . . . . . 5.5 Generating Function from Recurrence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 101 101 104 107 116 119 6 Introduction to Logic 127 6.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Predicate Logic∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . AF . . . . . . . . . . . . . . . DR 7 Graphs 7.1 Basic Concepts . . . . . . . . . . . 7.2 Connectedness . . . . . . . . . . . 7.3 Isomorphism in Graphs . . . . . . 7.4 Trees . . . . . . . . . . . . . . . . . 7.5 Connectivity . . . . . . . . . . . . 7.6 Eulerian Graphs . . . . . . . . . . 7.7 Hamiltonian Graphs . . . . . . . . 7.8 Bipartite Graphs . . . . . . . . . . 7.9 Matching in Graphs . . . . . . . . 7.10 Ramsey Numbers . . . . . . . . . . 7.11 Degree Sequence . . . . . . . . . . 7.12 Planar Graphs . . . . . . . . . . . 7.13 Vertex Coloring . . . . . . . . . . . 7.14 Representing graphs with Matrices 7.14.1 More Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 145 151 154 156 161 163 166 169 170 173 174 175 178 179 180 184

Text from page-5

Chapter 1 Basic Set Theory We will use the following notation throughout the book. 1. The empty set, denoted ∅, is the set that has no element. 2. N := {1, 2, . . .}, the set of Natural numbers; 3. W := {0, 1, 2, . . .}, the set of whole numbers 4. Z := {. . . , −2, −1, 0, 1, 2, . . .}, the set of Integers; 5. Q := { pq : p, q ∈ Z, q 6= 0}, the set of Rational numbers; AF DR 7. C := the set of Complex numbers. T 6. R := the set of Real numbers; and For the sake of convenience, we have assumed that the integer 0, is also a natural number. This chapter will be devoted to understanding set theory, relations, functions and the principle of mathematical induction. We start with basic set theory. 1.1 Basic Set Theory Mathematicians over the last two centuries have been used to the idea of considering a collection of objects/numbers as a single entity. These entities are what are typically called sets. The technique of using the concept of a set to answer questions is hardly new. It has been in use since ancient times. However, the rigorous treatment that the set received happened only in the 19th century due to the german mathematician Georg Cantor. He was the first person who was responsible in ensuring that the set had a home in mathematics. Cantor developed the concept of the set during his study of the trigonometric series, which is now known as the limit point or the derived set operator. He developed the transfinite numbers of which the ordinals and cardinals are two types. His new and path-breaking ideas were not well received by his contemporaries. Further, from his definition of a set, a number of contradictions and paradoxes arose. One of the most famous paradoxes is the Russell’s Paradox, due to Bertrand Russell in 1918. This paradox amongst others, opened the stage for the development of axiomatic set theory. The interested reader may refer to Katz [8]. In this book, we will consider the intuitive or naive view point of sets. The notion of a set is taken as a primitive and so we will not try to define it explicitly. On the contrary, we will give it an informal description and then go on to establish the properties of a set. 5

Lecture Notes