Excuses Don't get results
--Your friends at LectureNotes

Note for Mobile Computing - MC by shaik shabeer

  • Mobile Computing - MC
  • Note
  • nimra college of engineering and technology - ncet
  • Computer Science Engineering
  • B.Tech
  • 13 Topics
  • 27 Offline Downloads
  • Uploaded 5 months ago
Shaik Shabeer
Shaik Shabeer
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-3

d. Replacement of Wired Networks: wireless networks can also be used to replace wired networks, e.g., remote sensors, for tradeshows, or in historic buildings. Due to economic reasons, it is often impossible to wire remote sensors for weather forecasts, earthquake detection, or to provide environmental information. Wireless connections, e.g., via satellite, can help in this situation. Other examples for wireless networks are computers, sensors, or information displays in historical buildings, where excess cabling may destroy valuable walls or floors. e. Infotainment: wireless networks can provide up-to-date information at any appropriate location. The travel guide might tell you something about the history of a building (knowing via GPS, contact to a local base station, or triangulation where you are) downloading information about a concert in the building at the same evening via a local wireless network. Another growing field of wireless network applications lies in entertainment and games to enable, e.g., ad-hoc gaming networks as soon as people meet to play together. Limitations of Mobile Computing    Resource constraints: Battery      Interference: Radio transmission cannot be protected against interference using shielding and result in higher loss rates for transmitted data or higher bit error rates respectively Bandwidth: Although they are continuously increasing, transmission rates are still very low for wireless devices compared to desktop systems.  Researchers look for more efficient communication protocols with low overhead.  Dynamic changes in communication environment: variations in signal power within a region,  thus link delays and connection losses  Network Issues: discovery of the connection-service to destination and connection stability    Interoperability issues: the varying protocol standards 3

Text from page-4

 Security constraints: Not only can portable devices be stolen more easily, but the radio interface is also prone to the dangers of eavesdropping. Wireless access must always include encryption, authentication, and other security mechanisms that must  be efficient and simple to use. A simplified reference model The figure shows the protocol stack implemented in the system according to the reference model. End-systems, such as the PDA and computer in the example, need a full protocol stack comprising the application layer, transport layer, network layer, data link layer, and physical layer. Applications on the end-systems communicate with each other using the lower layer services. Intermediate systems, such as the interworking unit, do not necessarily need all of the layers. A Simplified Reference Model Physical layer: This is the lowest layer in a communication system and is responsible for the conversion of a stream of bits into signals that can be transmitted on the sender side. The physical layer of the receiver then transforms the signals back into a bit stream. For wireless communication, the physical layer is responsible for frequency selection, generation of the carrier frequency, signal detection (although heavy interference may disturb the signal), modulation of data onto a carrier frequency and (depending on the transmission scheme) encryption. ● Data link layer: The main tasks of this layer include accessing the medium, multiplexing of different data streams, correction of transmission errors, and synchronization (i.e., detection of a data frame). Altogether, the data link layer is responsible for a reliable point-to-point ● 4

Text from page-5

connection between two devices or a point-to-multipoint connection between one sender and several receivers. Network layer: This third layer is responsible for routing packets through a network or establishing a connection between two entities over many other intermediate systems. Important functions are addressing, routing, device location, and handover between different networks. ● Transport layer: This layer is used in the reference model to establish an end-to-end connection ● Application layer: Finally, the applications (complemented by additional layers that can support applications) are situated on top of all transmission oriented layers. Functions are service location, support for multimedia applications, adaptive applications that can handle the large variations in transmission characteristics, and wireless access to the world-wide web using a portable device. ● GSM : Mobile services, System architecture, Radio interface, Protocols, Localization and calling, Handover, Security, and New data services. GSM Services GSM is the most successful digital mobile telecommunication system in the world today. It is used by over 800 million people in more than 190 countries. GSM permits the integration of different voice and data services and the interworking with existing networks. Services make a network interesting for customers. GSM has defined three different categories of services: bearer, tele and supplementary services. Bearer services: GSM specifies different mechanisms for data transmission, the original GSM allowing for data rates of up to 9600 bit/s for non-voice services. Bearer services permit transparent and non-transparent, synchronous or asynchronous data transmission. Transparent bearer services only use the functions of the physical layer (layer 1) to transmit data. Data transmission has a constant delay and throughput if no transmission errors occur. Transmission quality can be improved with the use of forward error correction (FEC), which codes redundancy into the data stream and helps to reconstruct the original data in case of transmission errors. Transparent bearer services do not try to recover lost data in case of, for example, shadowing or interruptions due to handover. Non-transparent bearer services use protocols of layers two and three to implement error correction and flow control. These services use the transparent bearer services, adding a radio link protocol (RLP). This protocol comprises mechanisms of high-level data link control (HDLC), and special selective-reject mechanisms to trigger retransmission of erroneous data. 5

Text from page-6

Using transparent and non-transparent services, GSM specifies several bearer services for interworking with PSTN, ISDN, and packet switched public data networks (PSPDN) like X.25, which is available worldwide. Data transmission can be full-duplex, synchronous with data rates of 1.2, 2.4, 4.8, and 9.6 kbit/s or full-duplex, asynchronous from 300 to 9,600 bit/s. Tele services: GSM mainly focuses on voice-oriented tele services. These comprise encrypted voice transmission, message services, and basic data communication with terminals as known from the PSTN or ISDN (e.g., fax). The primary goal of GSM was the provision of high-quality digital voice transmission. Special codecs (coder/decoder) are used for voice transmission, while other codecs are used for the transmission of analog data for communication with traditional computer modems used in, e.g., fax machines. Another service offered by GSM is the emergency number (eg 911, 999). This service is mandatory for all providers and free of charge. This connection also has the highest priority, possibly pre-empting other connections, and will automatically be set up with the closest emergency center. A useful service for very simple message transfer is the short message service (SMS), which offers transmission of messages of up to 160 characters. Sending and receiving of “M“ is possi le duri g data or oi e tra s issio . It a e used for serious appli atio s such as displaying road conditions, e-mail headers or stock quotes, but it can also transfer logos, ring tones, horoscopes and love letters. The successor of SMS, the enhanced message service (EMS), offers a larger message size, formatted text, and the transmission of animated pictures, small images and ring tones in a standardized way. But with MMS, EMS was hardly used. MMS offers the transmission of larger pictures (GIF, JPG, WBMP), short video clips etc. and comes with mobile phones that integrate small cameras. Another non-voice tele service is group 3 fax, which is available worldwide. In this service, fax data is transmitted as digital data over the analog telephone network according to the ITU-T standards T.4 and T.30 using modems. Supplementary services: In addition to tele and bearer services, GSM providers can offer supplementary services. these services offer various enhancements for the standard telephony service, and may vary from provider to provider. Typical services are user identification, call redirection, or forwarding of ongoing calls, barring of incoming/outgoing calls, Advice of Charge (AoC) etc. Standard ISDN features such as closed user groups and multiparty communication may be available. 6

Lecture Notes