Note for Network Theory - NT by MD WESH KARNI

Note for Network Theory - NT

by Md Wesh Karni

  • Downloads: 663
  • Views: 3886
  • Uploaded 4 months ago
Add to Favourite

Suggested Materials

Leave your Comments


Md Wesh Karni

Civil Engineering at Trident Academy of Technology

Text from page-1

DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER ,(EE/EEE) SUBJECT:NETWORK THEORY SUBJECT CODE-1303 SYLLABUS :NETWORK THEORY (3-1-0) MODULE-I (10 HOURS) Coupled Circuits: Self-inductance and Mutual inductance, Coefficient of coupling, dot convention, Ideal Transformer, Analysis of multi-winding coupled circuits, Analysis of single tuned and double tuned coupled circuits. Transient study in RL, RC, and RLC networks by Laplace transform method with DC and AC excitation. Response to step, impulse and ramp inputs. Two Port networks: Two port parameters, short circuit admittance parameter, open circuit impedance parameters, Transmission parameters, Image parameters and Hybrid parameters. Ideal two port devices, ideal transformer. Tee and Pie circuit representation, Cascade and Parallel Connections. MODULE-II (10 HOURS) Network Functions & Responses: Concept of complex frequency, driving point and transfer functions for one port and two port network, poles & zeros of network functions, Restriction on Pole and Zero locations of network function. Impulse response and complete response. Time domain behavior form pole-zero plot. Three Phase Circuits: Analysis of unbalanced loads, Neutral shift, Symmetrical components, Analysis of unbalanced system, power in terms of symmetrical components MODULE-III (10 HOURS) Network Synthesis: Realizability concept, Hurwitz property, positive realness, properties of positive real functions, Synthesis of R-L, R-C and L-C driving point functions, Foster and Cauer forms MODULE-IV (10 HOURS) Graph theory: Introduction, Linear graph of a network, Tie-set and cut-set schedule, incidence matrix, Analysis of resistive network using cut-set and tie-set, Dual of a network. Filters: Classification of filters, Characteristics of ideal filters BOOKS [1]. Mac.E Van Valkenburg, “Network Analysis”, [2]. Franklin Fa-Kun. Kuo, “Network Analysis & Synthesis”, John Wiley & Sons.