Touch here to read
Page-1

Environmental Engineering by Shweta Sharma

Topic:
Shweta Sharma
Shweta Sharma

/ 122

Note for Environmental Engineering - EE By shweta sharma

Notes for Environmental Engineering - EE

by Shweta Sharma

  • Downloads: 312
  • Views: 4098
  • Uploaded 4 months ago
Add to Favourite

Suggested Materials

Leave your Comments

Contributors

Shweta Sharma

Civil Engineering at AKTU,Lucknow

Text from page-1

LECTURE-1 Module-1 Raw Water Source The various sources of water can be classified into two categories: 1. Surface sources, such as a. Ponds and lakes; b. Streams and rivers; c. Storage reservoirs; and d. Oceans, generally not used for water supplies, at present. 2. Sub-surface sources or underground sources, such as a. Springs; b. Infiltration wells ; and c. Wells and Tube-wells. Water Quantity Estimation The quantity of water required for municipal uses for which the water supply scheme has to be designed requires following data: 1. Water consumption rate (Per Capita Demand in litres per day per head) 2. Population to be served. Quantity= Per capita demand x Population Water Consumption Rate It is very difficult to precisely assess the quantity of water demanded by the public, since there are many variable factors affecting water consumption. The various types of water demands, which a city may have, may be broken into following classes: Water Consumption for Various Purposes: Types of Consumption Normal Range Average % (lit/capita/day) 1 Domestic Consumption 65-300 160 35 2 Industrial Demand 45-450 135 30 20-90 45 10 45-150 62 25 and 3 Public Uses Demand Commercial including Fire 4 Losses and Waste Fire Fighting Demand: The per capita fire demand is very less on an average basis but the rate at which the water is required is very large. The rate of fire demand is sometimes traeted as a function of population and is worked out from following empirical formulae: Authority Formulae (P in thousand) Q for 1 lakh Population) 1 American Insurance Association 2 Kuchling's Formula Q (L/min)=4637 √P (1-0.01√P) 41760 Q (L/min)=3182 √P 31800 4 UNDER REVISION