×
Start where you are. Use what you have. Do what you can.
--Your friends at LectureNotes
Close

Computer Network

by Jntu Heroes
Type: NoteInstitute: JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY Downloads: 525Views: 7667Uploaded: 8 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Jntu Heroes
Jntu Heroes
LECTURE NOTES ON COMPUTER NETWORKS III B. Tech I semester (JNTUH-R13) 1
UNIT-I A network is the interconnection of a set of devices capable of communication. In this definition, a device can be a host (or an end system as it is sometimes called) such as a large computer, desktop, laptop, workstation, cellular phone, or security system. A device in this definition can also be a connecting device such as a router, which connects the network to other networks, a switch, which connects devices together, a modem (modulator-demodulator), which changes the form of data, and so on. These devices in a network are connected using wired or wireless transmission media such as cable or air. When we connect two computers at home using a plugand-play router, we have created a network, although very small. Network Criteria A network must be able to meet a certain number of criteria. The most important of these are performance, reliability, and security. Performance Performance can be measured in many ways, including transit time and response time. Transit time is the amount of time required for a message to travel from one device to another. Response time is the elapsed time between an inquiry and a response. The performance of a network depends on a number of factors, including the number of users, the type of transmission medium, the capabilities of the connected hardware, and the efficiency of the software. Performance is often evaluated by two networking metrics: throughput and delay. We often need more throughput and less delay. However, these two criteria are often contradictory. If we try to send more data to the network, we may increase throughput but we increase the delay because of traffic congestion in the network. Reliability In addition to accuracy of delivery, network reliability is measured by the frequency of failure , the time it takes a link to recover from a failure, and the network's robustness in a catastrophe. Security Network security issues include protecting data from unauthorized access, protecting data from damage and development, and implementing policies and procedures for recovery from breaches and data losses. 2
Physical Structures Before discussing networks, we need to define some network attributes. Type of Connection A network is two or more devices connected through links. A link is a communications pathway that transfers data from one device to another. For visualization purposes, it is simplest to imagine any link as a line drawn between two points. For communication to occur, two devices must be connected in some way to the same link at the same time. There are two possible types of connections: point-to-point and multipoint. Point-to-Point A point-to-point connection provides a dedicated link between two devices. The entire capacity of the link is reserved for transmission between those two devices. Most point-to-point connections use an actual length of wire or cable to connect the two ends, but other options, such as microwave or satellite links, are also possible. When we change television channels by infrared remote control, we are establishing a point-to-point connection between the remote control and the television's control system. Multipoint A multipoint (also called multidrop) connection is one in which more than two specific devices share a single link. In a multipoint environment, the capacity of the channel is shared, either spatially or temporally. If several devices can use the link simultaneously, it is a spatially shared connection. If users must take turns, it is a timeshared connection. 3
PROTOCOL LAYERING We defined the term protocol in Chapter 1. In data communication and networking, aprotocol defines the rules that both the sender and receiver and all intermediate devices need to follow to be able to communicate effectively. When communication is simple, we may need only one simple protocol; when the communication is complex, we may need to divide the task between different layers, in which case we need a protocol at each layer, or protocol layering. Scenarios Let us develop two simple scenarios to better understand the need for protocol layering. First Scenario In the first scenario, communication is so simple that it can occur in only one layer. Assume Maria and Ann are neighbors with a lot of common ideas. Communication between Maria and Ann takes place in one layer, face to face, in the same language, as shown in Figure. Even in this simple scenario, we can see that a set of rules needs to be followed. First, Maria and Ann know that they should greet each other when they meet. Second, they know that they should confine their vocabulary to the level of their friendship. Third, each party knows that she should refrain from speaking when the other party is speaking. Fourth, each party knows that the conversation should be a dialog, not a monolog: both should have the opportunity to talk about the issue. Fifth, they should exchange some nice words when they leave. We can see that the protocol used by Maria and Ann is different from the communication between a professor and the students in a lecture hall. The communication in the second case is mostly monolog; the professor talks most of the time unless a student has a question, a situation in which the protocol dictates that she should raise her hand and wait for permission to speak. In this case, the communication is normally very formal and limited to the subject being taught. 4

Lecture Notes