×
It does not matter how slowly you go as long as you do not stop.

# Note for Applied Mathematics-1 - M-1 by Anil Kujur

• Applied Mathematics-1 - M-1
• Note
• 18 Topics
• 52606 Views
0 User(s)

#### Text from page-1

Notes on Mathematics - 1021 Peeyush Chandra, 1 Supported by a grant from MHRD A. K. Lal, V. Raghavendra, G. Santhanam

#### Text from page-2

Contents I Linear Algebra 1 Matrices 1.1 Definition of a Matrix . . . . . . 1.1.1 Special Matrices . . . . . 1.2 Operations on Matrices . . . . . 1.2.1 Multiplication of Matrices 1.3 Some More Special Matrices . . . 1.3.1 Submatrix of a Matrix . . 1.3.1 Block Matrices . . . . . . 1.4 Matrices over Complex Numbers 2 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear System of Equations 2.1 Introduction . . . . . . . . . . . . . . . . . . . 2.2 Definition and a Solution Method . . . . . . . 2.2.1 A Solution Method . . . . . . . . . . . 2.3 Row Operations and Equivalent Systems . . . 2.3.1 Gauss Elimination Method . . . . . . 2.4 Row Reduced Echelon Form of a Matrix . . . 2.4.1 Gauss-Jordan Elimination . . . . . . . 2.4.2 Elementary Matrices . . . . . . . . . . 2.5 Rank of a Matrix . . . . . . . . . . . . . . . . 2.6 Existence of Solution of Ax = b . . . . . . . . 2.6.1 Example . . . . . . . . . . . . . . . . . 2.6.2 Main Theorem . . . . . . . . . . . . . 2.6.3 Exercises . . . . . . . . . . . . . . . . 2.7 Invertible Matrices . . . . . . . . . . . . . . . 2.7.1 Inverse of a Matrix . . . . . . . . . . . 2.7.2 Equivalent conditions for Invertibility 2.7.3 Inverse and Gauss-Jordan Method . . 2.8 Determinant . . . . . . . . . . . . . . . . . . . 2.8.1 Adjoint of a Matrix . . . . . . . . . . 2.8.2 Cramer’s Rule . . . . . . . . . . . . . 2.9 Miscellaneous Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 10 10 12 13 14 15 17 . . . . . . . . . . . . . . . . . . . . . 19 19 20 21 21 24 26 27 29 30 33 33 34 35 35 35 37 39 40 43 45 46 3 Finite Dimensional Vector Spaces 49 3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

#### Text from page-3

4 CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 54 57 58 60 66 4 Linear Transformations 4.1 Definitions and Basic Properties 4.2 Matrix of a linear transformation 4.3 Rank-Nullity Theorem . . . . . . 4.4 Similarity of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 69 72 75 80 . . . . . . . . 87 87 92 100 103 . . . . 107 . 107 . 113 . 116 . 121 3.2 3.3 3.4 3.1.3 Subspaces . . . . . . 3.1.4 Linear Combinations Linear Independence . . . . Bases . . . . . . . . . . . . 3.3.1 Important Results . Ordered Bases . . . . . . . . . . . . . . . . . . . 5 Inner Product Spaces 5.1 Definition and Basic Properties . . . . . . . 5.2 Gram-Schmidt Orthogonalisation Process . 5.3 Orthogonal Projections and Applications . . 5.3.1 Matrix of the Orthogonal Projection . . . . . . . . 6 Eigenvalues, Eigenvectors and Diagonalization 6.1 Introduction and Definitions . . . . . . . . . . . 6.2 diagonalization . . . . . . . . . . . . . . . . . . 6.3 Diagonalizable matrices . . . . . . . . . . . . . 6.4 Sylvester’s Law of Inertia and Applications . . II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordinary Differential Equation 7 Differential Equations 7.1 Introduction and Preliminaries . . . . . . . . . 7.2 Separable Equations . . . . . . . . . . . . . . . 7.2.1 Equations Reducible to Separable Form 7.3 Exact Equations . . . . . . . . . . . . . . . . . 7.3.1 Integrating Factors . . . . . . . . . . . . 7.4 Linear Equations . . . . . . . . . . . . . . . . . 7.5 Miscellaneous Remarks . . . . . . . . . . . . . . 7.6 Initial Value Problems . . . . . . . . . . . . . . 7.6.1 Orthogonal Trajectories . . . . . . . . . 7.7 Numerical Methods . . . . . . . . . . . . . . . . 129 . . . . . . . . . . . . . . . . . . . . 8 Second Order and Higher Order Equations 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 8.2 More on Second Order Equations . . . . . . . . . . 8.2.1 Wronskian . . . . . . . . . . . . . . . . . . . 8.2.2 Method of Reduction of Order . . . . . . . 8.3 Second Order equations with Constant Coefficients 8.4 Non Homogeneous Equations . . . . . . . . . . . . 8.5 Variation of Parameters . . . . . . . . . . . . . . . 8.6 Higher Order Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 . 131 . 134 . 134 . 136 . 138 . 141 . 143 . 145 . 149 . 150 . . . . . . . . 153 . 153 . 156 . 156 . 159 . 160 . 162 . 164 . 166

#### Text from page-4

CONTENTS 8.7 5 Method of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9 Solutions Based on Power Series 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Properties of Power Series . . . . . . . . . . . . . 9.2 Solutions in terms of Power Series . . . . . . . . . . . . 9.3 Statement of Frobenius Theorem for Regular (Ordinary) 9.4 Legendre Equations and Legendre Polynomials . . . . . 9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . 9.4.2 Legendre Polynomials . . . . . . . . . . . . . . . III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laplace Transform 189 10 Laplace Transform 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . 10.2 Definitions and Examples . . . . . . . . . . . . . 10.2.1 Examples . . . . . . . . . . . . . . . . . . 10.3 Properties of Laplace Transform . . . . . . . . . 10.3.1 Inverse Transforms of Rational Functions 10.3.2 Transform of Unit Step Function . . . . . 10.4 Some Useful Results . . . . . . . . . . . . . . . . 10.4.1 Limiting Theorems . . . . . . . . . . . . . 10.5 Application to Differential Equations . . . . . . . 10.6 Transform of the Unit-Impulse Function . . . . . IV . . . . . . . . . . . . Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Numerical Applications . . . . . . . . . . 191 191 191 192 194 199 199 200 200 202 204 207 11 Newton’s Interpolation Formulae 11.1 Introduction . . . . . . . . . . . . . . . 11.2 Difference Operator . . . . . . . . . . 11.2.1 Forward Difference Operator . 11.2.2 Backward Difference Operator 11.2.3 Central Difference Operator . . 11.2.4 Shift Operator . . . . . . . . . 11.2.5 Averaging Operator . . . . . . 11.3 Relations between Difference operators 11.4 Newton’s Interpolation Formulae . . . 12 Lagrange’s Interpolation Formula 12.1 Introduction . . . . . . . . . . . . 12.2 Divided Differences . . . . . . . . 12.3 Lagrange’s Interpolation formula 12.4 Gauss’s and Stirling’s Formulas . 175 . 175 . 177 . 179 . 180 . 181 . 181 . 182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 . 209 . 209 . 209 . 211 . 213 . 214 . 214 . 214 . 215 . . . . 221 . 221 . 221 . 224 . 226 13 Numerical Differentiation and Integration 229 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.2 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233