You don’t have to be great to start, but you have to start to be great.
--Your friends at LectureNotes

Note for Database Management System - DBMS By JNTU Heroes

  • Database Management System - DBMS
  • Note
  • Jawaharlal Nehru Technological University Anantapur (JNTU) College of Engineering (CEP), Pulivendula, Pulivendula, Andhra Pradesh, India - JNTUACEP
  • Computer Science Engineering
  • 3 Topics
  • 1 Offline Downloads
  • Uploaded 2 years ago
Jntu Heroes
Jntu Heroes
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-1

Structure 1.0 Objectives 1.1 Introduction 1.2 Data Processing Vs. Data Management Systems 1.3 File Oriented Approach 1.4 Database Oriented Approach to Data Management 1.5 Characteristics of Database 1.6 Advantages and Disadvantages of a DBMS 1.7 Instances and Schemas 1.8 Data Models 1.9 Database Languages 1.9 Data Dictionary 1.11 Database Administrators and Database Users 1.12 DBMS Architecture and Data Independence 1.13 Types of Database System 1.14 Summary 1.15 keywords 1.16 Self Assessment Questions (SAQ) 1.17 References/Suggested Readings 1.0 Objectives At the end of this chapter the reader will be able to: • Distinguish between data and information and Knowledge • Distinguish between file processing system and DBMS • Describe DBMS its advantages and disadvantages • Describe Database users including data base administrator • Describe data models, schemas and instances. • Describe DBMS Architecture & Data Independence • Describe Data Languages 1

Text from page-2

1.1 Introduction A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data. This is a collection of related data with an implicit meaning and hence is a database. The collection of data, usually referred to as the database, contains information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database information that is both convenient and efficient. By data, we mean known facts that can be recorded and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of the people you know. You may have recorded this data in an indexed address book, or you may have stored it on a diskette, using a personal computer and software such as DBASE IV or V, Microsoft ACCESS, or EXCEL. A datum – a unit of data – is a symbol or a set of symbols which is used to represent something. This relationship between symbols and what they represent is the essence of what we mean by information. Hence, information is interpreted data – data supplied with semantics. Knowledge refers to the practical use of information. While information can be transported, stored or shared without many difficulties the same can not be said about knowledge. Knowledge necessarily involves a personal experience. Referring back to the scientific experiment, a third person reading the results will have information about it, while the person who conducted the experiment personally will have knowledge about it. Database systems are designed to manage large bodies of information. Management of data involves both defining structures for storage of information and providing mechanisms for the manipulation of information. In addition, the database system must ensure the safety of the information stored, despite system crashes or attempts at unauthorized access. If data are to be shared among several users, the system must avoid possible anomalous results. Because information is so important in most organizations, computer scientists have developed a large body of concepts and techniques for managing data. These concepts and technique form the focus of this book. This chapter briefly introduces the principles of database systems. 2

Text from page-3

1.2 Data Processing Vs. Data Management Systems Although Data Processing and Data Management Systems both refer to functions that take raw data and transform it into usable information, the usage of the terms is very different. Data Processing is the term generally used to describe what was done by large mainframe computers from the late 1940's until the early 1980's (and which continues to be done in most large organizations to a greater or lesser extent even today): large volumes of raw transaction data fed into programs that update a master file, with fixedformat reports written to paper. The term Data Management Systems refers to an expansion of this concept, where the raw data, previously copied manually from paper to punched cards, and later into dataentry terminals, is now fed into the system from a variety of sources, including ATMs, EFT, and direct customer entry through the Internet. The master file concept has been largely displaced by database management systems, and static reporting replaced or augmented by ad-hoc reporting and direct inquiry, including downloading of data by customers. The ubiquity of the Internet and the Personal Computer have been the driving force in the transformation of Data Processing to the more global concept of Data Management Systems. 1.3 File Oriented Approach The earliest business computer systems were used to process business records and produce information. They were generally faster and more accurate than equivalent manual systems. These systems stored groups of records in separate files, and so they were called file processing systems. In a typical file processing systems, each department has its own files, designed specifically for those applications. The department itself working with the data processing staff, sets policies or standards for the format and maintenance of its files. Programs are dependent on the files and vice-versa; that is, when the physical format of the file is changed, the program has also to be changed. Although the traditional file oriented approach to information processing is still widely used, it does have some very important disadvantages. 1.4 Database Oriented Approach to Data Management 3

Text from page-4

Consider part of a savings-bank enterprise that keeps information about all customers and savings accounts. One way to keep the information on a computer is to store it in operating system files. To allow users to manipulate the information, the system has a number of application programs that manipulate the files, including A program to debit or credit an account A program to add a new account A program to find the balance of an account A program to generate monthly statements System programmers wrote these application programs to meet the needs of the bank. New application programs are added to the system as the need arises. For example, suppose that the savings bank decides to offer checking accounts. As a result, the bank creates new permanent files that contain information about all the checking accounts maintained in the bank, and it may have to write new application programs to deal with situations that do not arise in savings accounts, such as overdrafts. Thus, as time goes by, the system acquires more files and more application programs. This typical file-processing system is supported by a conventional operating system. The system stores permanent records in various files, and it needs different application programs to extract records from, and add records to, the appropriate files. Before database management systems (DBMSs) came along, organizations usually stored information in such systems. Keeping organizational information in a file-processing system has a number of major disadvantages: Data redundancy and inconsistency. Since different programmers create the files and application programs over a long period, the various files are likely to have different formats and the programs may be written in several programming languages. Moreover, the same information may be duplicated in several places (files). For example, the address and telephone number of a particular customer may appear in a file that consists of savings-account records and in a file that consists of checking-account records. This redundancy leads to higher storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies 4

Lecture Notes