×
Yes, you can do it.
--Your friends at LectureNotes
Close

Mathematical Methods

by Jntu Heroes
Type: NoteInstitute: Jawaharlal nehru technological university anantapur college of engineering Offline Downloads: 103Views: 1443Uploaded: 9 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Jntu Heroes
Jntu Heroes
 Interpolation is the process of finding a function whose graph passes thr                                           experimentation, and tries to construct a function which closely fits those da     curve fitting or regression analysis. Interpolation is a specific case of curve fitting, in which the                                                                                  . In following subsection, we discuss three types of finite differences:                                                   first differences      
     respectively. In general, first forward differences are given by            . Further second forward differences are defined as the differences of the first differences. i.e.,                                                                                                                called the first backward differences. Here,                                                                                  
                                                                                                                                          is defined as                                                                            
                                       The differential coefficient of                      and is defined as                                                                                                                                                                               

Lecture Notes