×
STUDY HARD SO YOU CAN LIVE YOUR LIFE AS YOU WANT.

# Note for Mathematical Methods - MM By JNTU Heroes

• Mathematical Methods - MM
• Note
• Jawaharlal Nehru Technological University Anantapur (JNTU) College of Engineering (CEP), Pulivendula, Pulivendula, Andhra Pradesh, India - JNTUACEP
• 8 Topics
• 4378 Views
Jntu Heroes
0 User(s)

#### Text from page-1

 Interpolation is the process of ﬁnding a function whose graph passes thr                                           experimentation, and tries to construct a function which closely ﬁts those da     curve ﬁtting or regression analysis. Interpolation is a speciﬁc case of curve ﬁtting, in which the                                                                                  . In following subsection, we discuss three types of ﬁnite differences:                                                   ﬁrst differences      

#### Text from page-2

     respectively. In general, ﬁrst forward differences are given by            . Further second forward differences are deﬁned as the differences of the ﬁrst differences. i.e.,                                                                                                                called the ﬁrst backward differences. Here,                                                                                  

#### Text from page-3

                                                                                                                                          is deﬁned as                                                                            

#### Text from page-4

                                       The differential coefﬁcient of                      and is deﬁned as                                                                                                                                                                               