×
DREAM IT. BELIEVE IT. ACHIEVE IT.
--Your friends at LectureNotes
Close

Note for Mathematical Methods - MM By JNTU Heroes

  • Mathematical Methods - MM
  • Note
  • Jawaharlal Nehru Technological University Anantapur (JNTU) College of Engineering (CEP), Pulivendula, Pulivendula, Andhra Pradesh, India - JNTUACEP
  • 8 Topics
  • 4365 Views
  • 148 Offline Downloads
  • Uploaded 1 year ago
Jntu Heroes
Jntu Heroes
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-1

 Interpolation is the process of finding a function whose graph passes thr                                           experimentation, and tries to construct a function which closely fits those da     curve fitting or regression analysis. Interpolation is a specific case of curve fitting, in which the                                                                                  . In following subsection, we discuss three types of finite differences:                                                   first differences      

Text from page-2

     respectively. In general, first forward differences are given by            . Further second forward differences are defined as the differences of the first differences. i.e.,                                                                                                                called the first backward differences. Here,                                                                                  

Text from page-3

                                                                                                                                          is defined as                                                                            

Text from page-4

                                       The differential coefficient of                      and is defined as                                                                                                                                                                               

Lecture Notes