I'm working hard to be someone I'll be proud of.
--Your friends at LectureNotes

Digital Communication Techniques

by Amity Kumar
Type: NoteInstitute: Amity University Specialization: Electronics and Communication EngineeringDownloads: 90Views: 1745Uploaded: 7 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments


Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM(ANALOG) Information Source and Input Transducer Destination and Output Transducer I/P Signal TRANSMITTER CHANNEL O/P Signal RECEIVER Fig. 1.1: Block diagram of Communication System. The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system is to transfer information from one point (called Source) to another point, the user destination. The message produced by a source, normally, is not electrical. Hence an input transducer is used for converting the message to a time – varying electrical quantity called message signal. Similarly, at the destination point, another transducer converts the electrical waveform to the appropriate message. The transmitter is located at one point in space, the receiver is located at some other point separate from the transmitter, and the channel is the medium that provides the electrical connection between them. The purpose of the transmitter is to transform the message signal produced by the source of information into a form suitable for transmission over the channel. The received signal is normally corrupted version of the transmitted signal, which is due to channel imperfections, noise and interference from other sources.The receiver has the task of operating on the received signal so 2
as to reconstruct a recognizable form of the original message signal and to deliver it to the user destination. Communication Systems are divided into 3 categories: 1. Analog Communication Systems are designed to transmit analog information using analog modulation methods. 2. Digital Communication Systems are designed for transmitting digital information using digital modulation schemes, and 3. Hybrid Systems that use digital modulation schemes for transmitting sampled and quantized values of an analog message signal. ELEMENTS OF DIGITAL COMMUNICATION SYSTEMS: The figure 1.2 shows the functional elements of a digital communication system. 1. Analog Information Sources. Source of Information: 2. Digital Information Sources. Analog Information Sources → Microphone actuated by a speech, TV Camera scanning a scene, continuous amplitude signals. Digital Information Sources → These are teletype or the numerical output of computer which consists of a sequence of discrete symbols or letters. An Analog information is transformed into a discrete information through the process of sampling and quantizing. Digital Communication System Source of Information Source Encoder Channel Encoder Modulator Channel Received Signal User of Information Source Decoder Channel Decoder Demodulator 3
Fig 1.2: Block Diagram of a Digital Communication System SOURCE ENCODER / DECODER: The Source encoder ( or Source coder) converts the input i.e. symbol sequence into a binary sequence of 0‟s and 1‟s by assigning code words to the symbols in the input sequence. For eg. :-If a source set is having hundred symbols, then the number of bits used to represent each symbol will be 7 because 27=128 unique combinations are available. The important parameters of a source encoder are block size, code word lengths, average data rate and the efficiency of the coder (i.e. actual output data rate compared to the minimum achievable rate) At the receiver, the source decoder converts the binary output of the channel decoder into a symbol sequence. The decoder for a system using fixed – length code words is quite simple, but the decoder for a system using variable – length code words will be very complex. Aim of the source coding is to remove the redundancy in the transmitting information, so that bandwidth required for transmission is minimized. Based on the probability of the symbol code word is assigned. Higher the probability, shorter is the codeword. Ex: Huffman coding. CHANNEL ENCODER / DECODER: Error control is accomplished by the channel coding operation that consists of systematically adding extra bits to the output of the source coder. These extra bits do not convey any information but helps the receiver to detect and / or correct some of the errors in the information bearing bits. There are two methods of channel coding: 1. Block Coding: The encoder takes a block of „k‟ information bits from the source encoder and adds „r‟ error control bits, where „r‟ is dependent on „k‟ and error control capabilities desired. 2. Convolution Coding: The information bearing message stream is encoded in a continuous fashion by continuously interleaving information bits and error control bits. 4
The Channel decoder recovers the information bearing bits from the coded binary stream. Error detection and possible correction is also performed by the channel decoder. The important parameters of coder / decoder are: Method of coding, efficiency, error control capabilities and complexity of the circuit. MODULATOR: The Modulator converts the input bit stream into an electrical waveform suitable for transmission over the communication channel. Modulator can be effectively used to minimize the effects of channel noise, to match the frequency spectrum of transmitted signal with channel characteristics, to provide the capability to multiplex many signals. DEMODULATOR: The extraction of the message from the information bearing waveform produced by the modulation is accomplished by the demodulator. The output of the demodulator is bit stream. The important parameter is the method of demodulation. CHANNEL: The Channel provides the electrical connection between the source and destination. The different channels are: Pair of wires, Coaxial cable, Optical fibre, Radio channel, Satellite channel or combination of any of these. The communication channels have only finite Bandwidth, non-ideal frequency response, the signal often suffers amplitude and phase distortion as it travels over the channel. Also, the signal power decreases due to the attenuation of the channel. The signal is corrupted by unwanted, unpredictable electrical signals referred to as noise. The important parameters of the channel are Signal to Noise power Ratio (SNR), usable bandwidth, amplitude and phase response and the statistical properties of noise. Advantages of Digital Communication 1. The effect of distortion, noise and interference is less in a digital communication system. This is because the disturbance must be large enough to change the pulse from one state to the other. 5

Lecture Notes