×
ARE YOU REALLY WORKING HARD ENOUGH TO ACHIEVE YOUR GOALS?
--Your friends at LectureNotes
Close

Introduction To Nanotechnology

by Nawab Masid
Type: NoteDownloads: 48Views: 1673Uploaded: 5 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Nawab Masid
Nawab Masid
University of Tartu Institute of Physics Tallinn Technical University Institute of Mechanical Engineering Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine Vladimir Pokropivny Rynno Lohmus Irina Hussainova Alex Pokropivny Sergey Vlassov INTRODUCTION TO NANOMATERIALS AND NANOTECHNOLOGY Tartu 2007
V. Pokropivny, R. Lohmus, I. Hussainova, A. Pokropivny, S. Vlassov. Introduction in nanomaterials and nanotechnology. – University of Tartu. – 2007, 225p. (Special lecture course for bachelors, MSc, post-graduates and specialists in nanotechnology) Physics and chemistry of nanostructures or nanophysics and nanochemistry are relatively new areas of science arisen in last decade of past century after discovery of fullerenes and nanotubes. It is introduction into more extent interdisciplinary integrated modern science known now as nanotechnology rapidly developing. At this stage of growing knowledge authors have shortly outlined the subject and classifications of nanostructures, interesting milestones, main principles, methods, techniques, as well as general directions of future perspective research to be a guideline in a see of modern research. Main mechanisms of physico-chemical processes affected formation of nanostructured materials and their properties are clearly expressed, in particular, a dielectric permittivity as a principal characteristic of electric, magnetic, acoustic, optic transparency, superconducting, and other properties of nanoceramics and nanometals. The peculiar properties of nanostructures are emphasized to be result of size effects, external and internal, classical and quantum ones, that arise in zero-dimensional quantum dots, one-dimensional wires, and two-dimensional layers. Numerous applications are considered including microlasers, photonic crystals, probe microscopy, left-handed materials with negative refraction index, etc. Novel idea is advanced that new discovery of novel fundamental laws, phenomena and applied effects are possible only in artificially fabricated nanostructures with new effect theoretically predicted and designed in advance. Content of the course covers the types, classification and peculiarities of nanostructures, size effects, synthesis and growth, fullerenes, nanotubes, microlasers, photonics, scanning probe microscopy, nanomanipulation, etc. The course is based on the lectures given during several years for students of Kiev National University (Ukraine), Tartu University and Tallinn Technical University (Estonia). RAK/NSF Meede 1.1 Project has supported this work. Also Estonian Science foundation grants no. 6658,6537, 6660 and Ukraine Nanotechnology Science Foundation. Estonian Nanotechnology Competence Center projects were also engaged to this work Copyright: Vladimir Pokropivny (Tartu University, Tallinn University, Frantsevich Institute for Problems of Materials Science of NASU), Rynno Lohmus (Tartu University), Irina Hussainova (Tallinn University of Technology), Alex Pokropivny (Frantsevich Institute for Problems of Materials Science of NASU), Sergey Vlassov (Tartu University). ISBN: 978–9949–11–741–3 Tartu University Press www.tyk.ee
CONTENTS 1. INTRODUCTION .................................................................................................. 7 2. CLASSIFICATION OF NANOSTRUCTURES .................................................. 2.1. Gleiter's classification of nanostructured materials ....................................... 2.2. Classification of nanostructures by dimensionality ....................................... 2.3. Concept of “surface form engineering” in nanomaterial science .................. 14 14 16 18 3. PECULIARITIES OF NANOSTRUCTURED MATERIALS ............................. 3.1. Introduction..................................................................................................... 3.2. Extended internal surface................................................................................ 3.3. Increasing of surface energy and tension........................................................ 3.4. Grain boundaries............................................................................................. 3.5. Instability of 3D0 NSM due to grain growth.................................................. 20 20 22 23 25 26 4. SIZE EFFECTS IN NSM ....................................................................................... 4.1. Definition and types........................................................................................ 4.2. Internal classic (IC) size effects...................................................................... 4.2.1. Reduction of lattice parameter.............................................................. 4.2.2. Decrease in melting point ..................................................................... 4.2.3. Decreasing of thermal conductivity...................................................... 4.2.4. Diffusion enhancement ......................................................................... 4.2.5. Increasing of plastic yield strength and hardness of polycrystal ......... 4.3. External classic (EC) size effects at interaction of light with matter.............. 4.4. Intrinsic quantum (IQ) size effects ................................................................. 4.4.1. Transformation of absorption spectra of sodium from atom to solid ... 4.4.2. Blue shift – the increasing of band gap and luminescence frequency .. 4.4.3. Broadening of energetic bands ............................................................. 4.4.4. Phase transitions in ferromagnetic and ferroelectrics........................... 4.5. Extrinsic quantum (EQ) size effects in semimetallic bismuth Bi.................. 29 29 30 30 31 31 32 32 33 34 34 35 36 37 39 5. TECHNIQUES FOR SYNTHESIS AND CONSOLIDATION OF NSM............. 5.1. Vapor – phase synthesis.................................................................................. 5.1.1. Gas-Vapor deposition ........................................................................... 5.1.2. Plasma – based synthesis ...................................................................... 5.1.3. Molecular beam epitaxy ....................................................................... 5.1.4. Inert gas condensation .......................................................................... 5.1.5. Flame pyrolysis..................................................................................... 5.2. Liquid phase synthesis .................................................................................... 5.2.1. Colloidal methods................................................................................. 5.2.2. Solution precipitation............................................................................ 5.2.3. Electrodeposition .................................................................................. 5.3. Sol-gel technique ............................................................................................ 5.3.1. Introduction........................................................................................... 5.3.2. Sol-gel process...................................................................................... 5.3.3. Sol-gel coating processes...................................................................... 5.3.4. Sol-gel applications .............................................................................. 5.4. Solid – state phase synthesis........................................................................... 5.4.1. Mechanical milling, attriction and alloying.......................................... 5.4.2. Severe plastic deformation ................................................................... 5.5. Other methods................................................................................................. 41 41 42 42 44 45 45 46 46 47 47 48 48 48 50 53 53 54 56 59
4 5.6. Consolidation of nanopowders ........................................................................ 5.6.1. Sintering of nanoparticles ..................................................................... 5.6.2. Non- conventional processing .............................................................. 5.6.2.1. Microwave sintering................................................................. 5.6.2.2. Field – assisted sintering (FAS) ............................................... 5.6.2.3. Shockwave consolidation......................................................... 60 61 64 64 65 67 6. PROPERTIES OF 3D0 NANOSTRUCTURED MATERIALS (NSM)................ 6.1. Mechanical properties..................................................................................... 6.1.1. Hardness and strength........................................................................... 6.1.2. Ductility ................................................................................................ 6.1.3. Applications of Mechanical Properties of NSM................................... 6.2. Thermal properties of NSM............................................................................ 6.3. Electrical Properties of NSM.......................................................................... 6.4. Optical Properties of NSM ............................................................................. 6.5. Chemical Properties of NSM.......................................................................... 6.6. Magnetic Properties of NSM .......................................................................... 68 68 69 71 75 76 78 80 82 83 7. MEZO-NANO-POROUS MATERIALS ............................................................... 7.1. Nanoporous materials ..................................................................................... 7.2. Zeolites and zeolite-like materials .................................................................. 7.3. Mesoporous materials ..................................................................................... 84 84 85 86 8. PHYSICAL BACKGROUND OF NANOSTRUCTURES .................................. (QUANTUM DOTS, WHISKERS, AND WELLS) ................................................. 8.1. Quantization and Heisenberg's indeterminacy principle ................................ 8.2. Energy states and wave functions in quantum well........................................ 8.2.1. Rectangular infinite potential ............................................................... 8.2.2. Rectangular finite potential................................................................... 8.2.3. Parabolic finite potential....................................................................... 8.2.4. Rise of energy bands in periodical potential within the Kronig-Penny model ............................................................................ 8.3. Quantum well in the gallium arsenide GaAs/AlGaAs heterostructure........... 8.4. Density of electronic states for bulk 3D and low dimensional 2D, 1D, 0D systems............................................................................................................ 8.4.1. General case for bulk 3D system .......................................................... 8.4.2. Case for 2D-quantum well.................................................................... 8.4.3. 1D-Case for quantum wire.................................................................... 8.4.4. 0D-Case for quantum dot...................................................................... 8.5. 2D-Electronic gas (2D-EG) in metal-oxide-semiconductor (MOS) structures.......................................................................................................... 88 88 88 89 89 91 92 9. FULLERENES ........................................................................................................ 9.1. History of fullerene discovery and Nobel Prices ............................................ 9.2. Allotropic forms of carbon .............................................................................. 9.3. Fullerenes – the closed carbon cages consistent of 5- and 6-membered rings 9.4. Fullerites – the crystals of fullerenes ............................................................... 9.5. Fullerides – doped fullerites ............................................................................ 9.6. Synthesis of fullerenes ..................................................................................... 9.7. Spectral properties of С60 ................................................................................ 9.8. Application of fullerenes ................................................................................. 99 99 100 102 103 103 104 106 106 92 94 95 96 96 97 97 98

Lecture Notes