×
REMEMBER THAT THE REASON YOU ARE DOING THIS IS TO MAKE YOUR LIFE BETTER
--Your friends at LectureNotes

# Note for ENGINEERING MECHANICS - EM By Ps Ak

• ENGINEERING MECHANICS - EM
• Note
• 13 Topics
• 6793 Views
• 155 Offline Downloads
• Uploaded 1 year ago
Ps Ak
0 User(s)

### Leave your Comments

#### Text from page-2

After the renaissance a fast development started, linked among others with the names CHRISTIAAN HUYGENS (1629-1695), ISAAC NEWTON (1643-1727), ROBERT HOOKE (16351703) and LEONHARD EULER (1707-1783). Not only the motion of material points was investigated, but the observations were extended to bodies having a spatial dimension. With HOOKE’s work on elastic steel springs, the first material law was formulated. A general theory of the strength of materials and structures was developed by mathematicians like JAKOB BERNOULLI (1654-1705) and engineers like CHARLES AUGUSTIN COULOMB (1736-1806) and CLAUDE LOUIS MARIE HENRI NAVIER (1785-1836), who introduced new intellectual concepts likestress and strain. The achievements in continuum mechanics coincided with the fast development in mathematics: differential calculus has one of its major applications in mechanics, variational principlesare used in analytical mechanics. These days mechanics is mostly used in engineering practice. The problems to be solved are manifold: • Is the car’s suspension strong enough? • Which material can we use for the aircraft’s fuselage? • Will the bridge carry more the 10 trucks at the same time? • Why did the pipeline burst and who has to pay for it? • How can we redesign the bobsleigh to win a gold medal next time? • Shall we immediately shut down the nuclear power plant? For the scientist or engineer, the important questions he must find answers to are: • How shall I formulate a problem in mechanics? • How shall I state the governing field equations and boundary conditions? • What kind of experiments would justify, deny or improve my hypothesis? • How exhaustive should the investigation be? • Where might errors appear? • How much time is required to obtain a reasonable solution? • How much does it cost? www.annauniversityplus.com 3

#### Text from page-3

One of the most important aspects is the load–deformation behaviour of a structure. This question is strongly connected to the choice of the appropriate mathematical model, which is used for the investigation and the chosen material. We first have to learn something aboutdifferent models as well as the terms motion, deformation, strain, stress and load and their mathematical representations, which are vectors and tensors. Figure 1-1: Structural integrity is commonly not tested like this The objective of the present course is to emphasise the formulation of problems in engineering mechanics by reducing a complex "reality" to appropriate mechanical and mathematical models. In the beginning, the concept of continua is expounded in comparison to real materials.. After a review of the terms motion, displacement, and deformation, measures for strains and the concepts of forces and stresses are introduced. Next, the basic governing equations of continuum mechanics are presented, particularly the balance equationsfor mass, linear and angular momentum and energy. After a cursory introduction into the principles of material theory, the constitutive equations of linear elasticity are presented for small deformations. Finally, some practical problems in engineering, like stresses and deformation of cylindrical bars under tension, bending or torsion and of pressurised tubes are presented. A good knowledge in vector and tensor analysis is essential for a full uptake of continuum mechanics. A respective presentation will not be provided during the course, but the www.annauniversityplus.com 4

#### Text from page-4

nomenclature used and some rules of tensor algebra and analysis as well as theorems on properties of tensors are included in the Appendix. Physical Quantities and Units Definitions Physical quantities are used for the qualitative and quantitative description of physical phenomena. They represent measurable properties of physical items, e.g. length, time, mass, density, force, energy, temperature, etc. Every specific value of a quantity can be written as the product of a number and a unit. This product is invariant against a change of the unit. Examples: 1 m3 = 1000 cm3, 1 m/s = 3,6 km/h Physical quantities are denoted by symbols. Examples: Length l, Area A, velocity v, force F l = 1 km, A = 100 m2, v = 5 m/s F = 10 kN Base quantities are quantities, which are defined independently from each other in a way that all other quantities can be derived by multiplication or division. Examples: Length, l, time, t, and mass, m, can be chosen as base quantities in dynamics. The unit of a physical quantity is the value of a chosen and defined quantity out of all quantities of equal dimension. Example: 1 meter is the unit of all quantities having the dimension of a length (height, width, diameter, ...) The numerical value of a quantity G is denoted as {G}, its unit as [G]. The invariance relation is hence G = {G} [G] Base units are the units of base quantities. The number of base units hence always equals the www.annauniversityplus.com 5

#### Text from page-5

number of base units. Example: Meter, second and kilogramm can be chosen as base units in dynamics [l] = m, [t] = s, [m] = kg For discriminating symbols (for quantities) from units, the former are printed in italics, the latter plain. Conversion between US and SI Units Length: 1 m = 39.37 in 1 in = 0.0254 m 1 m = 3.28 ft 1 ft = 0.3048 m Force: 1 N = 0.2248 lb 1 lb = 4.448 N 1 kN = 0.2248 kip 1 kip = 4.448 kN Stress: 1 kPa = 0.145 lb/in2 1 lb/in2 = 6.895 kPa 1 MPa = 0.145 ksi 1 ksi = 6.895 MPa Decimal Fractions and Multiples of SI Units Fractions and multiples of SI units obtained by multiplication with factors 10±3n (n = 1, 2, ...) have specific names and characters, which are generated by putting special prefixes before the names and the characters of the SI units. Factor Prefix Character Factor Prefix Character 10-15 femto f 10-12 pico p 10-9 nano n 10-6 micro www.annauniversityplus.com 6 μ