×
Don’t stop when you’re tired. STOP when you are DONE.
--Your friends at LectureNotes
Close

Advance Semiconductor Devices

by Ankit Tivedi
Type: NoteInstitute: SLIET Specialization: Electrical EngineeringOffline Downloads: 37Views: 1036Uploaded: 3 months agoAdd to Favourite

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Ankit Tivedi
Ankit Tivedi
Advance Semiconductor Devices AITM LECTURE NOTES NEC-014 – ADVANCE SEMICONDUCTOR DEVICES SEMESTER: VI / ECE Prepared by: ANKIT TRIVEDI (AP / ECE) INTRODUCTION ELECTRON It is a stable elementary particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids. ELECTRONICS Electronics is the movement of electrons in a vacuum, gas, semiconductor, etc., in devices in which the flow is controlled and utilized. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies. ELECTRON DEVICES An electronic component is any physical entity in an electronic system used to affect the electrons or their associated fields in a manner consistent with the intended function of the electronic system. Components are generally intended to be connected together, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function (for example an amplifier, radio receiver, or oscillator). Components may be packaged singly, or in more complex groups as integrated circuits. Some common electronic components are capacitors, inductors, resistors, diodes, transistors, etc. Components are often categorized as active (e.g. transistors and thyristors) or passive (e.g. resistors and capacitors). ELECTRONIC CIRCUITS Circuits and components can be divided into two groups: analog and digital. A particular device may consist of circuitry that has one or the other or a mix of the two types. Axis Colleges Kanpur NEC-014
Advance Semiconductor Devices AITM Analog circuits are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage as opposed to discrete levels as in digital circuits. The number of different analog circuits so far devised is huge, especially because a 'circuit' can be defined as anything from a single component, to systems containing thousands of components. Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra, and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. UNIT I SEMICONDUCTOR DIODE SEMICONDUCTOR A semiconductor is a material which has electrical conductivity to a degree between that of a metal (such as copper) and that of an insulator (such as glass). Semiconductors are the foundation of modern electronics, including transistors, solar cells, light-emitting diodes (LEDs), quantum dots and digital and analog integrated circuits. DIODE Diode – Di + ode Di means two and ode means electrode. So physical contact of two electrodes is known as diode and its important function is alternative current to direct current. REVIEW OF INTRINSIC AND EXTRINSIC SEMICONDUCTORS INTRINSIC SEMICONDUCTOR An intrinsic semiconductor is one, which is pure enough that impurities do not appreciably affect its electrical behavior. In this case, all carriers are created due to thermally or optically excited electrons from the full valence band into the empty conduction band. Thus equal numbers of electrons and holes are present in an intrinsic semiconductor. Electrons and holes flow in opposite directions in an electric field, though they contribute to current in the same direction since they are oppositely charged. Hole current and electron current are not necessarily equal in an intrinsic semiconductor, however, because electrons and holes have different effective masses (crystalline analogues to free inertial masses). The concentration of carriers is strongly dependent on the temperature. At low temperatures, the valence band is completely full making the material an insulator. Increasing the Axis Colleges Kanpur NEC-014
Advance Semiconductor Devices AITM temperature leads to an increase in the number of carriers and a corresponding increase in conductivity. This characteristic shown by intrinsic semiconductor is different from the behavior of most metals, which tend to become less conductive at higher temperatures due to increased phonon scattering. Both silicon and germanium are tetravalent, i.e. each has four electrons (valence electrons) in their outermost shell. Both elements crystallize with a diamond-like structure, i.e. in such a way that each atom in the crystal is inside a tetrahedron formed by the four atoms which are closest to it. Each atom shares its four valence electrons with its four immediate neighbours, so that each atom is involved in four covalent bonds. EXTRINSIC SEMICONDUCTOR An extrinsic semiconductor is one that has been doped with impurities to modify the number and type of free charge carriers. An extrinsic semiconductor is a semiconductor that has been doped, that is, into which a doping agent has been introduced, giving it different electrical properties than the intrinsic (pure) semiconductor. Doping involves adding dopant atoms to an intrinsic semiconductor, which changes the electron and hole carrier concentrations of the semiconductor at thermal equilibrium. Dominant carrier concentrations in an extrinsic semiconductor classify it as either an n-type or p-type semiconductor. The electrical properties of extrinsic semiconductors make them essential components of many electronic devices. A pure or intrinsic conductor has thermally generated holes and electrons. However these are relatively few in number. An enormous increase in the number of charge carriers can by achieved by introducing impurities into the semiconductor in a controlled manner. The result is the formation of an extrinsic semiconductor. This process is referred to as doping. There are basically two types of impurities: donor impurities and acceptor impurities. Donor impurities are made up of atoms (arsenic for example) which have five valence electrons. Acceptor impurities are made up of atoms (gallium for example) which have three valence electrons. The two types of extrinsic semiconductor N-TYPE SEMICONDUCTORS Extrinsic semiconductors with a larger electron concentration than hole concentration are known as n-type semiconductors. The phrase 'n-type' comes from the negative charge of the electron. In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. N-type semiconductors are created by doping an intrinsic semiconductor with donor Axis Colleges Kanpur NEC-014
Advance Semiconductor Devices AITM impurities. In an n-type semiconductor, the Fermi energy level is greater than that of the intrinsic semiconductor and lies closer to the conduction band than the valence band. Arsenic has 5 valence electrons, however, only 4 of them form part of covalent bonds. The 5th electron is then free to take part in conduction. The electrons are said to be the majority carriers and the holes are said to be the minority carriers. P-TYPE SEMICONDUCTORS As opposed to n-type semiconductors, p-type semiconductors have a larger hole concentration than electron concentration. The phrase 'p-type' refers to the positive charge of the hole. In p-type semiconductors, holes are the majority carriers and electrons are the minority carriers. P-type semiconductors are created by doping an intrinsic semiconductor with acceptor impurities. P-type semiconductors have Fermi energy levels below the intrinsic Fermi energy level. The Fermi energy level lies closer to the valence band than the conduction band in a p-type semiconductor. Gallium has 3 valence electrons, however, there are 4 covalent bonds to fill. The 4th bond therefore remains vacant producing a hole. The holes are said to be the majority carriers and the electrons are said to be the minority carriers. PN JUNCTION When the N and P-type semiconductor materials are first joined together a very large density gradient exists between both sides of the junction so some of the free electrons from the donor impurity atoms begin to migrate across this newly formed junction to fill up the holes in the P-type material producing negative ions. However, because the electrons have moved across the junction from the N-type silicon to the P-type silicon, they leave behind positively charged donor ions (ND) on the negative side and now the holes from the acceptor impurity migrate across the junction in the opposite direction into the region are there are large numbers of free electrons. As a result, the charge density of the P-type along the junction is filled with negatively charged acceptor ions (NA), and the charge density of the N-type along the junction becomes positive. This charge transfer of electrons and holes across the junction is known as diffusion. This process continues back and forth until the number of electrons which have crossed the junction have a large enough electrical charge to repel or prevent any more carriers from crossing the junction. The regions on both sides of the junction become depleted of any free carriers in comparison to the N and P type materials away from the junction. Eventually a state of equilibrium (electrically neutral situation) will occur producing a "potential barrier" zone around the area of the junction as the donor atoms repel the holes and the acceptor atoms repel the electrons. Since no free charge carriers can rest in a position where there is a potential barrier the regions on both sides of the junction become depleted of any more free carriers in comparison to the N and P type materials away from the junction. This area around the junction is now called the Depletion Layer. Axis Colleges Kanpur NEC-014

Lecture Notes