×
Expect problems and eat them for breakfast.
--Your friends at LectureNotes
Close

Applied Thermodynamics

by Y.s.s.prasad KankanampatiY.s.s.prasad Kankanampati
Type: NoteOffline Downloads: 118Views: 3684Uploaded: 4 months ago

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Y.s.s.prasad Kankanampati
Y.s.s.prasad Kankanampati
BASIC THERMODYNAMICS 10ME33 BASIC THERMODYNAMICS Subject Code: 10ME33 Hours/Week: 04 Total Hours: 52 IA Marks: 25 Exam Hours: 03 Exam Marks: 100 PART-A UNIT - 1 Fundamental Concepts & Definitions: Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic ;processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points and measurements. 06 Hours UNIT - 2 Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. 06 Hours UNIT - 3 First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, pure substance; definition, twoproperty rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications, analysis of unsteady processes such as film and evacuation of vessels with and without heat transfer. 07 Hours UNIT - 4 Second Law of Thermodynamics: Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Reversible and irreversible processes; factors that make a process irreversible, reversible heat engines, Carnot cycle, Carnot principles. 07 Hours Department of Mechanical Engineering, SJBIT Page 1
BASIC THERMODYNAMICS 10ME33 PART-B UNIT - 5 Entropy: Clasius inequality; Statement, proof, application to a reversible cycle. Entropy; definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate. Available and unavailable energy. 06 Hours UNIT - 6 Pure Substances: P-T and P-V diagrams, triple point and critical points. Subcooled liquid, saturated liquid, mixture of saturated liquid and vapour, saturated vapour and superheated vapour states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams. Steam tables and its use. Throttling calorimeter, separating and throttling calorimeter. 07 Hours UNIT - 7 Thermodynamic relations: Maxwell relation, Clausius Clayperon's equation. Ideal gas; equation of state, internal energy and enthalpy as functions of temperature only, universal and particular gas constants, specific heats, perfect and semi-perfect gases. Evaluation of heat, work, change in internal energy. enthalpy and entropy in various quasi-static processes. 07 Hours UNIT - 8 Ideal gas mixture : Ideal gas mixture; Dalton's laws of partial pressures, Amagat's law of additive volumes, evaluation of properties, Analysis of various processes. Real Gases: Introduction. Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Law of corresponding states, compressiblity factor; compressibility chart 06 Hours Data Handbooks : 1. Thermodynamic data hand book, B.T. Nijaguna. 2. Properties of Refrigerant & Psychometric (tables & Charts in SI Units), Dr. S.S. Banwait, Dr. S.C. Laroiya, Birla Pub. Pvt. Ltd., Delhi, 2008 TEXT BOOKS: 1. Basic Engineering Thermodynamics, A.Venkatesh, Universities Press, 2008 2. Basic and Applied Thermodynamics, P.K.Nag, 2nd Ed., Tata McGraw Hill Pub. REFERENCE BOOKS: 1. Thermodynamics, An Engineering Approach, Yunus A.Cenegal and Michael A.Boles, Tata McGraw Hill publications, 2002 2. Engineering Thermodynamics, J.B.Jones and G.A.Hawkins, John Wiley and Sons.. 3. Fundamentals of Classical Thermodynamics, G.J.Van Wylen and R.E.Sonntag, Wiley Eastern. 4. An Introduction to Thermodynamcis, Y.V.C.Rao, Wiley Eastern, 1993, 5. B.K Venkanna, Swati B. Wadavadagi “Basic Thermodynamics, PHI, New Delhi, 2010 Department of Mechanical Engineering, SJBIT Page 2
BASIC THERMODYNAMICS 10ME33 CONTENTS 1. Fundamental Concepts & Definitions 4-11 2. Work and Heat 12-25 3. First Law of Thermodynamics 26-42 4. Second Law of Thermodynamics 43-60 5. Entropy 61-76 6. Pure Substances 77-86 7. Thermodynamic relations 8. Ideal gas mixture Department of Mechanical Engineering, SJBIT 87-104 105-119 Page 3
BASIC THERMODYNAMICS 10ME33 UNIT 1 Introduction Thermodynamics involves the storage, transformation, and transfer of energy. Energy is stored as internal energy (due to temperature), kinetic energy (due to motion), potential energy (due to elevation), and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work. We will present equations that relate the transformations and transfers of energy to properties such as temperature, pressure, and density. The properties of materials thus become very important. Many equations will be based on experimental observations that have been presented as mathematical statements, or laws: primarily the first and second laws of thermodynamics. The mechanical engineer‟s objective in studying thermodynamics is most often the analysis of a rather complicated device, such as an air conditioner, an engine, or a power plant. As the fluid flows through such a device, it is assumed to be a continuum in which there are measurable quantities such as pressure, temperature, and velocity. This book, then, will be restricted to macroscopic or engineering thermodynamics. If the behavior of individual molecules is important, statistical thermodynamics must be consulted. System: We need to fix our focus of attention in order to understand heat and work interaction. The body or assemblage or the space on which our attention is focused is called system. The system may be having real or imaginary boundaries across which the interaction occurs. The boundary may be rigid and sometimes take different shapes at different times. If the system has imaginary boundary then we must properly formulate the idea of system in our mind. Department of Mechanical Engineering, SJBIT Page 4

Lecture Notes