×

Close

- Applied Mathematics - 2 - M-2
- Note
**Anna university - gtec**- 8 Topics
**9126 Views**- 94 Offline Downloads
- Uploaded 10 months ago

Touch here to read

Page-2

Topic:

MA6251 3.1 MATHEMATICS-II UNIT –III LAPLACE TRANSFORMATION Laplace transformation-Conditions and existence 28 Problems 3.2 Transforms of Elementary functions-Basic Properties 29 Problems 3.3 (a) Transforms of derivatives 31 (b)Derivatives and integrals of Transforms (c)Integrals of Transforms Problems 3.4 Transforms of the unit step functions and impulse function 34 Problems 3.5 Transforms of periodic functions 35 Problems 3.6 Inverse Laplace Transform 36 Problems 3.7 Convolution theorem 42 Problems 3.8 Initial and final value theorems 45 3.9 Solution of linear ODE of Second Order with constant coefficients 47 Problems UNIT-IV ANALYTIC FUNCTIONS 4.1 Introduction –Function of A Complex Variable 49 4.2 Analytic Functions(C-R Equations) 49 Problems 4.3 Harmonic and Orthogonal Properties Of Analytic Functions Problems 51

MA6251 4.4 MATHEMATICS-II Construction of Analytic Functions 56 Problems 4.5 Conformal Mapping 58 Problems 4.6 Bilinear Transformation 61 Problems UNIT V- COMPLEX INTEGRATION 5.1 Prerequisite 62 5.2 Introduction 62 5.3 Cauchy’s Theorem 62 Problems 5.4 Taylor’s and Laurent’s Series Expansion. 64 Problems 5.5 Singularities 67 Problems 5.6 Residues 69 Problems 5.7 Evaluation of real definite Integrals as contour integrals 72 Problems 5.8 Applications 79 APPENDICES A Question Bank B University Questions

MA6251 MATHEMATICS – II REGULATION 2013 SYLLABUS MA6251 MATHEMATICS – II L T P C 3104 OBJECTIVES: • To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems. • To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines. • To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electric current. • To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated. UNIT I VECTOR CALCULUS 9+3 Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green’s theorem in a plane, Gauss divergence theorem and Stokes’ theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds. UNIT II ORDINARY DIFFERENTIAL EQUATIONS 9+3 Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear equations with constant coefficients. UNIT III LAPLACE TRANSFORM 9+3 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions – Transform of periodic functions. Inverse Laplace transform -Statement of Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques. UNIT IV ANALYTIC FUNCTIONS 9+3 Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z2, ez and bilinear transformation. UNIT V COMPLEX INTEGRATION 9+3 Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s integral formula – Taylor’s and Laurent’s series expansions – Singular points – Residues – Cauchy’s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis). TOTAL: 60 PERIODS

TEXT BOOKS: 1. Bali N. P and Manish Goyal, “A Text book of Engineering Mathematics”, Eighth Edition, Laxmi Publications Pvt Ltd.,(2011). 2. Grewal. B.S, “Higher Engineering Mathematics”, 41 (2011). Edition, Khanna Publications, Delhi, REFERENCES: 1. Dass, H.K., and Er. Rajnish Verma,” Higher Engineering Mathematics”, S. Chand Private Ltd., (2011) 2. Glyn James, “Advanced Modern Engineering Mathematics”, 3rd Edition, Pearson Education, (2012). 3. Peter V. O’Neil,” Advanced Engineering Mathematics”, 7th Edition, Cengage learning, (2012). 4. Ramana B.V, “Higher Engineering Mathematics”, Tata McGraw Hill Publishing Company, New Delhi, (2008).

## Leave your Comments