×
My under eye areas maybe dark but my future will be bright and that is more important.
--Your friends at LectureNotes
Close

Applied Physics-II – Modern Physics

by Anna Superkings
Type: NoteInstitute: Anna university Specialization: Electronics and Communication EngineeringDownloads: 13Views: 96Uploaded: 15 days agoAdd to Favourite

Touch here to read
Page-1

Applied Physics-II – Modern Physics by Anna Superkings

Topic:
Anna Superkings
Anna Superkings

/ 421

Share it with your friends

Suggested Materials

Leave your Comments

Contributors

Anna Superkings
Anna Superkings
PH6251 S.No CONTENTS UNIT – I CHAPTER – I CONDUCTING MATERIALS Introduction 1 1.1.1.Basic Terminologies 1 1.2 Conducting Materials 1 1.3 Electron Theory of solids 2 1.4 Classical Free Electron Theory 3 1.1 1.4.1. Drude – Lorentz Theory 3 1.4.2. Postulates of Classical Free Electron Theory 3 1.4.3. Derivation of Electrical conductivity 4 1.4.4. Thermal Conductivity 6 1.5 Wiedemann – Franz Law 8 1.6 Lorentz Number 9 1.7 Merits of classical free electron theory 9 1.8 Drawbacks of classical free electron theory 9 1.9 Quantum Free Electron Theory 10 1.10 Fermi Dirac Distribution Function 10 1.10.1. Effect of Temperature 1.11 SCE ENGINEERING PHYSICS – II PAGE.NO 10 Density of Energy States 12 1.11.1. Definition 12 Dept. of S & H
PH6251 ENGINEERING PHYSICS – II 1.11.2. Derivation 13 1.11.3. Calculation of Carrier Concentration at 0 K 15 1.11.4. Calculation of Fermi Energy 16 1.11.5. Average Energy of an Electron at 0 K 16 UNIT II CHAPTER – II SEMICONDUCTING MATERIALS 2.1 Introduction 17 2.1.1. Properties of Semiconducting materials 17 2.1.2. Elemental and Compound semiconductors 17 2.2 Intrinsic Semiconductors – Electrons and Holes 18 2.3 Carrier Concentration in an Intrinsic Semiconductor 19 2.3.1. Density of Electrons 19 2.3.2. Density of Holes 21 2.3.3. Density of intrinsic Carrier Concentration 22 2.3.4. Fermi Energy Level 22 2.3.5. Electrical Conductivity 24 2.3.6. Determination of Band gap in intrinsic semiconductor 26 Extrinsic Semiconductor 28 2.4.1. n- type Semiconductor 28 2.4.2. p- type Semiconductor 28 2.4 2.5 SCE Carrier Concentration and Fermi level Calculation in n- type Semiconductor Dept. of S & H
PH6251 ENGINEERING PHYSICS – II 29 2.5.1. Fermi energy level 2.6 2.7 2.8 2.5.2. Density of electron Concentration 31 2.5.3. Electrical Conductivity 32 2.5.4. Variation of carrier concentration with temperature in n – type semiconductor 32 Carrier Concentration and Fermi level Calculation in p- type Semiconductor 33 2.6.1. Carrier Concentration 33 2.6.2. Fermi Energy level 35 Variation of carrier concentration with temperature in P- type Semiconductor 36 Hall Effect 36 2.8.1. Statement 36 2.8.2. Theory 37 2.8.3. Calculation of Hall Coefficient 41 2.8.4. Applications of Hall Effect 42 UNIT – III CHAPTER – III MAGNETIC AND SUPERCONDUCTING MATERIALS 3.1 Introduction 43 3.2 Terms and definitions 43 3.3 Origin of Magnetic moment 44 3.3.1 Orbital Magnetic moment 44 3.3.2 Bohr magneton 45 3.4 SCE Different types of magnetic materials 45 3.4.1 Diamagnetic materials 45 3.4.2 Paramagnetic materials 46 Dept. of S & H
PH6251 ENGINEERING PHYSICS – II 47 3.4.3 Ferromagnetic materials 3.4.4 Anti Ferro magnetic materials 47 3.4.5 Ferri magnetic materials 48 3.5 Ferromagnetism 49 3.6 Domain theory of ferromagnetism 49 3.6.1 Domain magnetization 50 3.6.2 Energies involved in the domain growth 50 3.6.3 Explanation of Hysteresis based on domain theory 53 3.7 Soft and Hard magnetic materials 55 3.8 Energy product 56 3.9 Ferri magnetic materials – Ferrites 57 3.9.1. Structure of ferrites 57 3.9.2. Preparation 58 3.9.3. Properties 59 3.9.4. Advantages 59 3.9.5. Disadvantages 59 3.9.6. Applications 60 CHAPTER – IV SUPERCONDUCTING MATERIALS SCE 4.1 Introduction 60 4.2 Super conducting phenomena 60 4.2.1 61 General Features 4.3 Properties of Superconductor 61 4.4 Types of superconductors 63 4.4.1 Type-I superconductor 63 4.4.2 Type-II superconductor 64 Dept. of S & H

Lecture Notes