×

Close

Type:
**Note**Specialization:
**Civil Engineering**Offline Downloads:
**70**Views:
**2707**Uploaded:
**4 months ago**

FMCET
CE6501 – STRUCTURAL ANALYSIS
FMCET
1
UNIT – I
UNIT I INDETERMINATE FRAMES 9 Degree of static and kinematic
indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid
frames (Degree of statical indeterminacy up to two) - Energy and consistent
deformation methods.
S.NO
2 MARKS
PAGE NO
1
Why it is necessary to compute deflections in structures?
4
2
What is meant by ‘cambering technique, in structures?
4
3
Name any four methods used for the computation of deflections
in structures.
State the difference between strain energy method and unit load
method in the determination of deflection of structures.
What are the assumptions made in the unit load method?
4
4
10
Give the equation that is used for the determination of deflection
at a given point i in beams and frames.
The horizontal displacement of the end D of the portal frame is
required. Determine the relevant equations due to the unit load at
appropriate point.
Due to load at B in the truss in fig. the forces in the members are
as under. Determine the horizontal displacement of B by unit
load method.
Determine the rotation of the curved beam in fig. due to a
moment Mo, by unit load method.
State the Principle of Virtual work.
11
Sketch the Williot’s Diagram for the truss in fig. to find ∆B.
6
12
What is the strain energy stored in a rod of length l and axial
rigidity AE to an axial force P?
Define Virtual work.
7
4
5
6
7
8
9
13
14
15
16
17
Explain the procedure involved in the deflection of pin jointed
plane frames.
In the truss shown in fig. no load acts. The member AB gets
4mm too short. The cross sectional area of each member is A =
300 mm2 and E = 200 GPa. Determine the vertical displacement
of joint C.
Using the method of virtual work, determine the vertical
displacement of point B of the beam shown in fig. Take E = 2x
105 MPa and I = 825x 107 mm4.
Table shows the lengths and deformations of the members of the
cantilever truss, shown in fig. Construct a Williot’ diagram and
tabulate the displacement of nodes.
DEPARTMENT OF CIVIL ENGINEERING/ FMCET
4
4
5
5
6
6
7
7
7
8
9

FMCET
S.NO
1
2
3
4
5
6
7
CE6501 – STRUCTURAL ANALYSIS
FMCET
2
16 MARKS
Determine the vertical displacement of joint C of the steel truss
shown in fig. The cross sectional area of each member is A =
400 mm2 and E = 2*105 N/mm2.
Using the principle of virtual work, determine the vertical and
horizontal deflection components of joint C of the truss in fig. A
= 150*10-6 m2 and E = 200*106 kN/m2
Determine the vertical and horizontal displacements of the point
C of the pin-jointed frame shown in fig. The cross sectional area
of AB is 100 sqmm and of AC and BC 150 mm2 each. E= 2 x 10
5
N/mm2. (By unit load method)
Using the principle of least work, analyze the portal frame
shown in Fig.
Using the method of virtual work, determine the horizontal
displacement of support D of the frame shown in fig. The values
of I are indicated along the members. Take E = 200 x 106 KN/m2
and I = 300 x 10-6 m4.
Using the method of virtual work, determine the horizontal
displacement of support D of the frame shown in fig. The values
of I are indicated along the members. Take E = 200 x 106 KN/m2
and I = 300 x 10-6 m4.
Using the method of virtual work, determine the horizontal
displacement of support D of the frame shown in fig. The values
of I are indicated along the members. Take E = 200 x 106 KN/m2
and I = 300 x 10-6 m4.
DEPARTMENT OF CIVIL ENGINEERING/ FMCET
PAGE NO
11
15
18
20
23
24
26

FMCET
CE6501 – STRUCTURAL ANALYSIS
FMCET
3
UNIT – I
TWO MARKS QUESTIONS AND ANSWERS
1.
Why it is necessary to compute deflections in structures?
Computation of deflection of structures is necessary for the following
reasons:
(i) If the deflection of a structure is more than the permissible, the structure will
not look aesthetic and will cause psychological upsetting of thje occupants.
(ii) Excessive deflection may cause cracking in the materials attached to the
structure. For example, if the deflection of a floor beam is excessive, the floor finishes
and partition walls supported on the beam may get cracked and unserviceable.
What is meant by ‘cambering technique, in structures?
Cambering is a technique applied on site, in which a slight upward
curve is made in the structure / beams during construction, so that it will straighten out
and attain the straight shape during loading. This will considerably reduce the
downward deflection that may occur at later stages.
2.
3.
Name any four methods used for the computation of deflections in
structures.
(i) Virtual work method – Dummy unit load method
(ii) Strain energy method
(iii) Willot Mohr diagram method
(iv) Method of elastic weights
4.
State the difference between strain energy method and unit load method in
the determination of deflection of structures.
In strain energy method, an imaginary load P is applied at the point
where the deflection is desired to be determined. P is equated to Zero in the final step
and the deflection is obtained.
In unit load method, an unit load (instead of P) is applied at the point
where the deflection is desired.
5.
What are the assumptions made in the unit load method?
Assumptions made in unit load method are
1. The external and internal forces are in equilibrium
2. Supports are rigid and no movement is possible.
3. The material is strained well within elastic limit.
6.
Give the equation that is used for the determination of deflection at a given
point i in beams and frames.
Deflection at a point i is given by,
l
M x m x dx
i
EI
0
DEPARTMENT OF CIVIL ENGINEERING/ FMCET

FMCET
CE6501 – STRUCTURAL ANALYSIS
FMCET
4
Where Mx = moment at a section X due to the applied loads
Mx = moment at a section X due to unit load applied at the point i and
in the direction of the desired dicplacement
EI = flexural rigidity
11.
State the Principle of Virtual work.
It states that the work done on a structure by external loads is equal to the
internal energy stored in a structure (Ue = Ui)
Work of external loads = work of internal loads
12.
What is the strain energy stored in a rod of length l and axial rigidity AE
to an axial force P?
Strain energy stored
P2 L
U= -------2AE
13.
Define Virtual work.
The term virtual work means the work done by a real force acting
through a virtual displacement or a virtual force acting through a real displacement.
The virtual work is not a real quantity but an imaginary one.
14.
Explain the procedure involved in the deflection of pin jointed plane
frames.
1. Virtual forces k: Remove all the real loads from the truss. Place a
unit load on the truss at the joint and in the direction of the desired displacement. Use
the method of joints or the method of sections and calculate the internal forces k in
each member of the truss.
2. Real forces F: These forces arre caused only by the real loads acting
on the truss. Use the method of sections or the method of joints to determine the forces
F in each member.
3. Virtual work equation: Apply the equation of virtual work, to
determine the desired displacement.
15.
In the truss shown in fig. no load acts. The member AB gets 4mm too
short. The cross sectional area of each member is A = 300 mm2 and E = 200 GPa.
Determine the vertical displacement of joint C.
DEPARTMENT OF CIVIL ENGINEERING/ FMCET

## Leave your Comments