×
Nothing in the world is more common than unsuccessful people with talent.

# Note for Compound Interest - CI by Placement Factory

• Compound Interest - CI
• Note
• Quantitative Aptitude
• Placement Preparation
• 409 Views
0 User(s)

#### Text from page-1

Solving Compound Interest Problems  What is Compound Interest?  If you walk into a bank and open up a savings account you will earn interest on the money you deposit in  the bank. If the interest is calculated once a year then the interest is called “simple interest”. If the interest is  calculated more than once per year, then it is called “compound interest”.  Compound Interest Formula  The mathematical formula for calculating compound interest depends on several factors. These factors  include the amount of money deposited called the principal, the annual interest rate (in decimal form), the  number of times the money is compounded per year, and the number of years the money is left in the bank.  These factors lead to the formula  FV = future value of the deposit  P = principal or amount of money deposited  r = annual interest rate (in decimal form)  n = number of times compounded per year  t = time in years.  n t  r  ö æ FV = P ç1 + ÷ è n ø  Solving Compound Interest Problems  To solve compound interest problems, we need to take the given information at plug the information into the  compound interest formula and solve for the missing variable. The method used to solve the problem will  depend on what we are trying to find. If we are solving for the time, t, then we will need to use logarithms  because the compound interest formula is an exponential equation and solving exponential equations with  different bases requires the use of logarithms.  Examples – Now let’s solve a few compound interest problems.  Example 1: If you deposit \$4000 into an account paying 6% annual interest compounded quarterly, how  much money will be in the account after 5 years?  4(5)  æ 0.06 ö FV = 4000 ç 1 + ÷ 4 ø  è Plug in the giving information, P = 4000, r = 0.06, n = 4,  and t = 5.  FV = 4000(1.015) 20  FV = 4000(1.346855007) Use the order or operations to simplify the problem. If the  problem has decimals, keep as many decimals as possible  until the final step.  FV = 5387.42  Round your final answer to two decimals places.  After 5 years there will be \$5387.42 in the account.

#### Text from page-2

Example 2: If you deposit \$6500 into an account paying 8% annual interest compounded monthly, how  much money will be in the account after 7 years?  12(7)  æ 0.08 ö FV = 6500 ç 1 + ÷ 12 ø  è Plug in the giving information, P = 6500, r = 0.08, n = 12,  and t = 7.  FV = 6500(1.00666666) 84  FV = 6500(1.747422051) Use the order or operations to simplify the problem. If the  problem has decimals, keep as many decimals as possible  until the final step.  FV = 11358.24  Round your final answer to two decimals places.  After 7 years there will be \$11358.24 in the account.  Example 3: How much money would you need to deposit today at 9% annual interest compounded monthly  to have \$12000 in the account after 6 years?  12(6)  æ 0.09 ö 12000 = P ç1 + ÷ 12 ø  è Plug in the giving information, FV = 12000, r = 0.09, n =  12, and t = 6.  12000 = P(1.0075) 72  Use the order or operations to simplify the problem. If the  problem has decimals, keep as many decimals as possible  until the final step.  12000 = P(1.712552707) P = 7007.08  Divide and round your final answer to two decimals  places.  You would need to deposit \$7007.08 to have \$12000 in 6 years.  In the last 3 examples we solved for either FV or P and when solving for FV or P is mostly a calculator  exercise. Be careful not to try and type too much into the calculator in one step and let the calculator  store as many decimals as possible. Do not round off too soon because your answer may be slightly off  and when dealing with money people want every cent they deserve.  In the next 3 examples we will be solving for time, t. When solving for time, we will need to solve  exponential equations with different bases. Remember that to solve exponential equations with  different bases we will need to take the common logarithm or natural logarithm of each side. Taking  the logarithm of each side will allow us to use Property 5 and rewrite the problem as a multiplication  problem. Once the problem is rewritten as a multiplication problem we should be able to solve the  problem.

#### Text from page-3

Example 4: If you deposit \$5000 into an account paying 6% annual interest compounded monthly, how  long until there is \$8000 in the account?  12t  æ 0.06 ö 8000 = 5000 ç 1 + ÷ 12 ø  è Plug in the giving information, FV = 8000, P = 5000, r =  0.06, and n = 12.  8000 = 5000(1.005)12t  Use the order or operations to simplify the problem. Keep  as many decimals as possible until the final step.  1.6 = 1.00512t  Divide each side by 5000.  log(1.6) = log(1.00512t )  Take the logarithm of each side. Then use Property 5 to  rewrite the problem as multiplication.  log1.6 = (12t)(log1.005) log1.6  = 12t  log1.005 Divide each side by log 1.005.  94.23553232 ≈ 12t  Use a calculator to find log 1.6 divided by log 1.005.  t ≈ 7.9  Finish solving the problem by dividing each side by 12  and round your final answer.  It will take approximately 7.9 years for the account to go from \$5000 to \$8000.  Example 5: If you deposit \$8000 into an account paying 7% annual interest compounded quarterly, how  long until there is \$12400 in the account?  4t  æ 0.07 ö 12400 = 8000 ç 1 + ÷ 4 ø  è Plug in the giving information, FV = 12400, P = 8000, r =  0.07, and n = 4.  12400 = 8000(1.0175) 4t  Use the order or operations to simplify the problem. Keep  as many decimals as possible until the final step.  1.55 = 1.0175 4t  Divide each side by 8000.  log(1.55) = log(1.01754t )  Take the logarithm of each side. Then use Property 5 to  rewrite the problem as multiplication.  log1.55 = (4t)(log1.0175) log1.55  = 4t  log1.0175 Divide each side by log 1.0175.  25.26163279 ≈ 4t  Use a calculator to find log 1.55 divided by log 1.0175.  t ≈ 6.3  Finish solving the problem by dividing each side by 4 and  round your final answer.  It will take approximately 6.3 years for the account to go from \$8000 to \$12400.

#### Text from page-4

Example 6: At 3% annual interest compounded monthly, how long will it take to double your money?  At first glance it might seem that this problem cannot be solved because we do not have enough  information. It can be solved as long as you double whatever amount you start with. If we start with  \$100, then P = \$100 and FV = \$200.  12t  æ 0.03 ö 200 = 100 ç1 + ÷ 12 ø  è Plug in the giving information, FV = 200, P = 100, r =  0.03, and n = 12.  200 = 100(1.0025)12t  Use the order or operations to simplify the problem. Keep  as many decimals as possible until the final step.  2 = 1.0025 12t  Divide each side by 100.  log(2) = log(1.0025 12t )  Take the logarithm of each side. Then use Property 5 to  rewrite the problem as multiplication.  log 2 = (12t)(log1.0025) log 2  = 12t  log1.0025 Divide each side by log 1.0025.  277.6053016 ≈ 12t  Use a calculator to find log 2 divided by log 1.0025.  t ≈ 23.1  Finish solving the problem by dividing each side by 12  and round your final answer.  At 3% annual interest it will take approximately 23.1 years to double your money.  Addition Examples  If you would like to see more examples of solving compound interest problems, just click on the link below.  Additional Examples