×
THE FUTURE DEPENDS ON WHAT YOU DO TODAY
--Your friends at LectureNotes
Close

Note for Wireless Communication - WC By Gogula Santhosh reddy

  • Wireless Communication - WC
  • Note
  • 8 Topics
  • 1184 Views
  • 14 Offline Downloads
  • Uploaded 7 months ago
Gogula Santhosh Reddy
Gogula Santhosh Reddy
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-1

LECTURE NOTES ON WIRELESS COMMUNICATION AND NETWORKS IV B. Tech II semester (JNTUH-R13) Mr. MD.KHADIR, Asst. Professor Mr. G VIJAY KUMAR, Asst. Professor Mrs. P. ANITHA, Asst. Professor ELECTRONICS AND COMMUNICATION ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderbad-500043

Text from page-2

SYLLABUS UNIT-I The Cellular Concept-System Design Fundamentals: Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Interference and system capacity — Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference , Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring. UNIT—II Mobile Radio Propagation: Large-Scale Path Loss: Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection- Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, Diffraction-Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, lndoor Propagation Models-Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling. . UNIT —III Mobile Radio Propagation: Small —Scale Fading and Multipath: Small Scale Multipath propagationFactors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channelRelationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke’s model for flat fading, spectral shape due to Doppler spread in Clarke’s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model. UNIT -IV Equalization and Diversity: Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity Techniques-Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver. UNIT -V Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11 ,IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

Text from page-3

TEXT BOOKS 1. Wireless Communications, Principles, Practice — Theodore, S.Rappaport, 2nd Ed., 2002, PHI. 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press. 3. Mobile Cellular Communication — Gottapu Sasibhushana Rao, Pearson Education, 2012. REFERENCE BOOKS 1. Principles of Wireless Networks — Kaveh Pah Laven and P. Krishna Murthy, 2002, PE 2. Wireless Digital Communications — Kamilo Feher, 1999, PHI. 3. Wireless Communication and Networking — William Stallings, 2003,PHI. 4. Wireless Communication — Upen Dalal, Oxford Univ. Press 5. Wireless Communications and Networking — Vijay K. Gary, Elsevier.

Text from page-4

UNIT 1 Cellular System Introduction In the older mobile radio systems, single high power transmitter was used to provide coverage in the entire area. Although this technique provided a good coverage, but it was virtually impossible in this technique to re-use the same radio channels in the system, and any effort to re-use the radio channels would result in interference. Therefore, in order to improve the performance of a wireless system with the rise in the demand for the services, a cellular concept was later proposed. This chapter will examine several parameters related with the cellular concept. The Cellular Concept The design aim of early mobile wireless communication systems was to get a huge coverage area with a single, high-power transmitter and an antenna installed on a giant tower, transmitting a data on a single frequency. Although this method accomplished a good coverage, but it also means that it was practically not possible to reuse the same frequency all over the system, because any effort to reuse the same frequency would result in interference. The cellular concept was a major breakthrough in order to solve the problems of limited user capacity and spectral congestion. Cellular system provides high capacity with a limited frequency spectrum without making any major technological changes [1]. It is a system-level idea in which a single high-power transmitter is replaced with multiple lowpower transmitters, and small segment of the service area is being covered by each transmitter, which is referred to as a cell. Each base station (transmitter) is allocated a part of the total number of channels present in the whole system, and different groups of radio channels are allocated to the neighboring base stations so that all the channels

Lecture Notes