You can use excuses to convince others, but how will you convince yourself?
--Your friends at LectureNotes

Lab Manuals for Digital Signal Processing - DSP By ANNA SUPERKINGS

  • Digital Signal Processing - DSP
  • Practical
  • Anna university - ACEW
  • Electronics and Communication Engineering
  • 22 Experiments
  • 40 Offline Downloads
  • Uploaded 1 year ago
Anna Superkings
Anna Superkings
0 User(s)
Download PDFOrder Printed Copy

Share it with your friends

Leave your Comments

Text from page-1


Text from page-2

EC 6511 DIGITAL SIGNAL PROCESSING LAB MANUAL INTRODUCTION MATLAB stands for MATrix LABoratory. It is a technical computing environment for high performance numeric computation and visualisation. It integrates numerical analysis, matrix computation, signal processing and graphics in an easy-to-use environment, where problems and solutions are expressed just as they are written mathematically, without traditional programming. MATLAB allows us to express the entire algorithm in a few dozen lines, to compute the solution with great accuracy in a few minutes on a computer, and to readily manipulate a threedimensional display of the result in colour. MATLAB is an interactive system whose basic data element is a matrix that does not require dimensioning. It enables us to solve many numerical problems in a fraction of the time that it would take to write a program and execute in a language such as FORTRAN, BASIC, or C. It also features a family of application specific solutions, called toolboxes. Areas in which toolboxes are available include signal processing, image processing, control systems design, dynamic systems simulation, systems identification, neural networks, wavelength communication and others. It can handle linear, non-linear, continuous-time, discrete-time, multivariable and multirate systems. This chapter gives simple programs to solve specific problems that are included in the previous chapters. All these MATLAB programs have been tested under version 7.1 of MATLAB and version 6.12 of the signal processing toolbox. MATLAB COMMANDS: S.SUMATHI , AP/ECE Page 2

Text from page-3

EC 6511 DIGITAL SIGNAL PROCESSING LAB MANUAL GENERATION OF SIGNALS 1.A. CONTINUOUS TIME SIGNAL Aim To Generate a continuous sinusoidal time signals Using MATLAB. Requirements Matlab 2007 SOFTWARE Procedure 1. OPEN MATLAB 2. File New Script. a. Type the program in untitled window 3. File 4. Debug Save type filename.m in matlab workspace path Run. Wave will displayed at Figure dialog box. Theory Common Periodic Waveforms The toolbox provides functions for generating widely used periodic waveforms:sawtooth generates a sawtooth wave with peaks at ±1 and a period of 2π. An optional width parameter specifies a fractional multiple of 2π at which the signal's maximum occurs. square generates a square wave with a period of 2π. An optional parameter specifies duty cycle, the percent of the period for which the signal is positive. Common Aperiodic Waveforms The toolbox also provides functions for generating several widely used aperiodic waveforms: gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified time, center frequency, and fractional bandwidth. Optional parameters return in-phase and Quadrature pulses, the RF signal envelope, and the cutoff time for the trailing pulse envelope. chirp generates a linear, log, or quadratic swept-frequency cosine signal. An optional parameter specifies alternative sweep methods. An optional parameter phi allows initial phase to be specified in degrees. Program % S.SUMATHI , AP/ECE Page 3

Text from page-4

EC 6511 DIGITAL SIGNAL PROCESSING LAB MANUAL % Assuming The Sampling frequency is 5 Mhz clc; clear all; clear all; Finput = 1000; t = 0:0.0005:1; Fsampling = 5000000; a = 10 Tsampling = 1 / Fsampling; f = 13; Nsample = Fsampling/ Finput; xa = a*sin(2*pi*f*t); N = 0:5*Nsample-1; subplot(2,1,1) x=sin(2 * pi * Finput * Tsampling * N); plot(t,xa);grid plot(x); title('Sine Wave Generation'); xlabel('Time, msec'); xlabel('Time -- >'); ylabel('Amplitude'); ylabel('Amplitude-- >'); title('Continuous-time signal x_{a}(t)'); grid on; axis([0 1 -10.2 10.2]) Result Thus the Continuous Time Signal was generated using MATLAB. S.SUMATHI , AP/ECE Page 4

Lecture Notes